{-# OPTIONS --safe #-} open import Ledger.Types.GovStructure open import Ledger.Transaction using (TransactionStructure) module Ledger.Gov.Properties (txs : _) (open TransactionStructure txs using (govStructure)) (open GovStructure govStructure hiding (epoch)) where open import Ledger.Prelude hiding (Any; any?) open import Axiom.Set.Properties open import Ledger.Enact govStructure open import Ledger.Gov txs open import Ledger.GovernanceActions govStructure hiding (yes; no) open import Ledger.Ratify txs import Data.List.Membership.Propositional as P open import Data.List.Membership.Propositional.Properties open import Data.List.Relation.Unary.All using (all?; All) open import Data.List.Relation.Unary.Any hiding (map) open import Data.List.Relation.Unary.Unique.Propositional open import Data.Maybe.Properties open import Relation.Binary using (IsEquivalence) open import Tactic.Defaults open import Tactic.GenError open Equivalence open GovActionState open Inverse private lookupActionId : (pparams : PParams) (role : GovRole) (aid : GovActionID) (s : GovState) → Dec (Any (λ (aid' , ast) → aid ≡ aid' × canVote pparams (action ast) role) s) lookupActionId pparams role aid = any? λ _ → ¿ _ ¿ isUpdateCommittee : (a : GovAction) → Dec (∃[ new ] ∃[ rem ] ∃[ q ] a ≡ UpdateCommittee new rem q) isUpdateCommittee NoConfidence = no λ() isUpdateCommittee (UpdateCommittee new rem q) = yes (new , rem , q , refl) isUpdateCommittee (NewConstitution x x₁) = no λ() isUpdateCommittee (TriggerHF x) = no λ() isUpdateCommittee (ChangePParams x) = no λ() isUpdateCommittee (TreasuryWdrl x) = no λ() isUpdateCommittee Info = no λ() instance needsPolicy₁ : {a : GovAction} → (∃[ u ] a ≡ ChangePParams u) ⁇ needsPolicy₁ {NoConfidence} = ⁇ no λ() needsPolicy₁ {UpdateCommittee new rem q} = ⁇ no λ() needsPolicy₁ {NewConstitution x x₁} = ⁇ no λ() needsPolicy₁ {TriggerHF x} = ⁇ no λ() needsPolicy₁ {ChangePParams x} = ⁇ yes (-, refl) needsPolicy₁ {TreasuryWdrl x} = ⁇ no λ() needsPolicy₁ {Info} = ⁇ no λ() needsPolicy₂ : {a : GovAction} → (∃[ w ] a ≡ TreasuryWdrl w) ⁇ needsPolicy₂ {NoConfidence} = ⁇ no λ() needsPolicy₂ {UpdateCommittee new rem q} = ⁇ no λ() needsPolicy₂ {NewConstitution x x₁} = ⁇ no λ() needsPolicy₂ {TriggerHF x} = ⁇ no λ() needsPolicy₂ {ChangePParams x} = ⁇ no λ() needsPolicy₂ {TreasuryWdrl x} = ⁇ yes (-, refl) needsPolicy₂ {Info} = ⁇ no λ() hasPrev : ∀ x v → Dec (∃[ v' ] x .action ≡ TriggerHF v' × pvCanFollow v' v) hasPrev record { action = NoConfidence } v = no λ () hasPrev record { action = (UpdateCommittee _ _ _) } v = no λ () hasPrev record { action = (NewConstitution _ _) } v = no λ () hasPrev record { action = (TriggerHF v') } v = case pvCanFollow? {v'} {v} of λ where (yes p) → yes (-, refl , p) (no ¬p) → no (λ where (_ , refl , h) → ¬p h) hasPrev record { action = (ChangePParams _) } v = no λ () hasPrev record { action = (TreasuryWdrl _) } v = no λ () hasPrev record { action = Info } v = no λ () opaque unfolding validHFAction isRegistered instance validHFAction? : ∀ {p s e} → validHFAction p s e ⁇ validHFAction? {record { action = NoConfidence }} = Dec-⊤ validHFAction? {record { action = UpdateCommittee _ _ _ }} = Dec-⊤ validHFAction? {record { action = NewConstitution _ _ }} = Dec-⊤ validHFAction? {record { action = TriggerHF v ; prevAction = prev }} {s} {record { pv = (v' , aid') }} with aid' ≟ prev ×-dec pvCanFollow? {v'} {v} | any? (λ (aid , x) → aid ≟ prev ×-dec hasPrev x v) s ... | yes p | _ = ⁇ yes (inj₁ p) ... | no _ | yes p with ((aid , x) , x∈xs , (refl , v , h)) ← P.find p = ⁇ yes (inj₂ (x , v , to ∈-fromList x∈xs , h)) ... | no ¬p₁ | no ¬p₂ = ⁇ no λ { (inj₁ x) → ¬p₁ x ; (inj₂ (s , v , (h₁ , h₂ , h₃))) → ¬p₂ $ ∃∈-Any ((prev , s) , (from ∈-fromList h₁ , refl , (v , h₂ , h₃))) } validHFAction? {record { action = ChangePParams _ }} = Dec-⊤ validHFAction? {record { action = TreasuryWdrl _ }} = Dec-⊤ validHFAction? {record { action = Info }} = Dec-⊤ isRegistered? : ∀ Γ v → Dec (isRegistered Γ v) isRegistered? _ (CC , _) = ¿ _ ∈ _ ¿ isRegistered? _ (DRep , _) = ¿ _ ∈ _ ¿ isRegistered? _ (SPO , _) = ¿ _ ∈ _ ¿ instance Computational-GOV' : Computational _⊢_⇀⦇_,GOV'⦈_ String Computational-GOV' = record {Go} where module Go Γ s where open GovEnv (proj₁ Γ) k = proj₂ Γ module GoVote sig where open GovVote sig computeProof = case lookupActionId pparams (proj₁ voter) gid s ,′ isRegistered? (proj₁ Γ) voter of λ where (yes p , yes p') → case Any↔ .from p of λ where (_ , mem , refl , cV) → success (_ , GOV-Vote (∈-fromList .to mem , cV , p')) (yes _ , no ¬p) → failure (genErrors ¬p) (no ¬p , _) → failure (genErrors ¬p) completeness : ∀ s' → Γ ⊢ s ⇀⦇ inj₁ sig ,GOV'⦈ s' → map proj₁ computeProof ≡ success s' completeness s' (GOV-Vote (mem , cV , reg)) with lookupActionId pparams (proj₁ voter) gid s | isRegistered? (proj₁ Γ) voter ... | no ¬p | _ = ⊥-elim (¬p (Any↔ .to (_ , ∈-fromList .from mem , refl , cV))) ... | yes _ | no ¬p = ⊥-elim $ ¬p reg ... | yes p | yes p' with Any↔ .from p ... | (_ , mem , refl , cV) = refl module GoProp prop where open GovProposal prop renaming (action to a; deposit to d; policy to p; returnAddr to addr; prevAction to prev) open PParams pparams hiding (a) instance Dec-actionWellFormed = actionWellFormed? {-# INCOHERENT Dec-actionWellFormed #-} H = ¿ actionWellFormed a × d ≡ govActionDeposit × validHFAction prop s enactState × (∃[ u ] a ≡ ChangePParams u ⊎ ∃[ w ] a ≡ TreasuryWdrl w → p ≡ ppolicy) × (¬ (∃[ u ] a ≡ ChangePParams u ⊎ ∃[ w ] a ≡ TreasuryWdrl w) → p ≡ nothing) × hasParent' enactState s a prev × addr .RwdAddr.net ≡ NetworkId ¿ ,′ isUpdateCommittee a computeProof = case H of λ where (yes (wf , dep , vHFA , pol , ¬pol , HasParent' en , goodAddr) , yes (new , rem , q , refl)) → case ¿ ∀[ e ∈ range new ] epoch < e × dom new ∩ rem ≡ᵉ ∅ ¿ of λ where (yes newOk) → success (_ , GOV-Propose (wf , dep , pol , ¬pol , (λ where refl → newOk) , vHFA , en , goodAddr)) (no ¬p) → failure (genErrors ¬p) (yes (wf , dep , vHFA , pol , ¬pol , HasParent' en , goodAddr) , no notNewComm) → success (-, GOV-Propose (wf , dep , pol , ¬pol , (λ isNewComm → ⊥-elim (notNewComm (-, -, -, isNewComm))) , vHFA , en , goodAddr)) (no ¬p , _) → failure (genErrors ¬p) completeness : ∀ s' → Γ ⊢ s ⇀⦇ inj₂ prop ,GOV'⦈ s' → map proj₁ computeProof ≡ success s' completeness s' (GOV-Propose (wf , dep , pol , ¬pol , newOk , vHFA , en , goodAddr)) with H ... | (no ¬p , _) = ⊥-elim (¬p (wf , dep , vHFA , pol , ¬pol , HasParent' en , goodAddr)) ... | (yes (_ , _ , _ , _ , _ , HasParent' _ , _) , no notNewComm) = refl ... | (yes (_ , _ , _ , _ , _ , HasParent' _ , _) , yes (new , rem , q , refl)) rewrite dec-yes ¿ ∀[ e ∈ range new ] epoch < e × dom new ∩ rem ≡ᵉ ∅ ¿ (newOk refl) .proj₂ = refl computeProof : (sig : GovVote ⊎ GovProposal) → _ computeProof (inj₁ s) = GoVote.computeProof s computeProof (inj₂ s) = GoProp.computeProof s completeness : ∀ sig s' → Γ ⊢ s ⇀⦇ sig ,GOV'⦈ s' → _ completeness (inj₁ s) = GoVote.completeness s completeness (inj₂ s) = GoProp.completeness s Computational-GOV : Computational _⊢_⇀⦇_,GOV⦈_ String Computational-GOV = it allEnactable-singleton : ∀ {aid s es} → getHash (s .prevAction) ≡ getHashES es (s .action) → allEnactable es [ (aid , s) ] allEnactable-singleton {aid} {s} {es} eq = helper All.∷ All.[] where module ≡ᵉ = IsEquivalence (≡ᵉ-isEquivalence th) helper : enactable es (getAidPairsList [ (aid , s) ]) (aid , s) helper with getHashES es (s .action) | getHash (s .prevAction) ... | just x | just x' with refl <- just-injective eq = [ (aid , x) ] , proj₁ ≡ᵉ.refl , All.[] ∷ [] , inj₁ (refl , refl) ... | just x | nothing = case eq of λ () ... | nothing | _ = _