{-# OPTIONS --safe #-}

open import Ledger.Conway.Transaction
open import Ledger.Conway.Abstract
import Ledger.Conway.Certs

module Ledger.Conway.Ledger.Properties
  (txs : _) (open TransactionStructure txs) (open Ledger.Conway.Certs govStructure)
  (abs : AbstractFunctions txs) (open AbstractFunctions abs)
  where

-- open import Ledger.Chain txs abs
-- open import Ledger.Enact govStructure
-- open import Ledger.Epoch txs abs
open import Ledger.Conway.Certs.Properties govStructure
open import Ledger.Conway.Gov txs
open import Ledger.Conway.Gov.Properties txs
open import Ledger.Conway.Ledger txs abs
open import Ledger.Prelude
open import Ledger.Conway.Ratify txs hiding (vote)
open import Ledger.Conway.Utxo txs abs
-- open import Ledger.Utxo.Properties txs abs
open import Ledger.Conway.Utxow txs abs
open import Ledger.Conway.Utxow.Properties txs abs

open import Axiom.Set.Properties th

open import Data.Bool.Properties using (¬-not)
open import Data.List.Properties using (++-identityʳ; map-++)
open import Data.Nat.Properties using (+-0-monoid; +-identityʳ; +-suc)
open import Relation.Binary using (IsEquivalence)

import Relation.Binary.Reasoning.Setoid as SetoidReasoning

open import Interface.ComputationalRelation

-- ** Proof that LEDGER is computational.

instance
  _ = Monad-ComputationResult

  Computational-LEDGER : Computational _⊢_⇀⦇_,LEDGER⦈_ String
  Computational-LEDGER = record {go}
    where
    open Computational ⦃...⦄ renaming (computeProof to comp; completeness to complete)
    computeUtxow = comp {STS = _⊢_⇀⦇_,UTXOW⦈_}
    computeCerts = comp {STS = _⊢_⇀⦇_,CERTS⦈_}
    computeGov   = comp {STS = _⊢_⇀⦇_,GOVS⦈_}

    module go
      (Γ : LEnv)   (let open LEnv Γ)
      (s : LState) (let open LState s)
      (tx : Tx)    (let open Tx tx renaming (body to txb); open TxBody txb)
      where
      utxoΓ = UTxOEnv  record { LEnv Γ }
      certΓ = CertEnv   epoch slot , pparams , txvote , txwdrls , _ 
      govΓ : CertState  GovEnv
      govΓ = λ certState   txid , epoch slot , pparams , ppolicy , enactState , certState , _ 

      computeProof : ComputationResult String (∃[ s' ] Γ  s ⇀⦇ tx ,LEDGER⦈ s')
      computeProof = case isValid  true of λ where
        (yes p)  do
          (utxoSt' , utxoStep)  computeUtxow utxoΓ utxoSt tx
          (certSt' , certStep)  computeCerts certΓ certState txcerts
          (govSt'  , govStep)   computeGov (govΓ certSt') (rmOrphanDRepVotes certSt' govSt) (txgov txb)
          success (_ , LEDGER-V⋯ p utxoStep certStep govStep)
        (no ¬p)  do
          (utxoSt' , utxoStep)  computeUtxow utxoΓ utxoSt tx
          success (_ , LEDGER-I⋯ (¬-not ¬p) utxoStep)

      completeness :  s'  Γ  s ⇀⦇ tx ,LEDGER⦈ s'  (proj₁ <$> computeProof)  success s'
      completeness ledgerSt (LEDGER-V⋯ v utxoStep certStep govStep)
        with isValid  true
      ... | no ¬v = contradiction v ¬v
      ... | yes refl
        with computeUtxow utxoΓ utxoSt tx | complete _ _ _ _ utxoStep
      ... | success (utxoSt' , _) | refl
        with computeCerts certΓ certState txcerts | complete _ _ _ _ certStep
      ... | success (certSt' , _) | refl
        with computeGov (govΓ certSt') (rmOrphanDRepVotes certSt' govSt ) (txgov txb) | complete {STS = _⊢_⇀⦇_,GOVS⦈_} (govΓ certSt') _ _ _ govStep
      ... | success (govSt' , _) | refl = refl
      completeness ledgerSt (LEDGER-I⋯ i utxoStep)
        with isValid  true
      ... | yes refl = case i of λ ()
      ... | no ¬v
        with computeUtxow utxoΓ utxoSt tx | complete _ _ _ _ utxoStep
      ... | success (utxoSt' , _) | refl = refl

Computational-LEDGERS : Computational _⊢_⇀⦇_,LEDGERS⦈_ String
Computational-LEDGERS = it


-- ** Proof that the set equality `govDepsMatch` (below) is a LEDGER invariant.

-- Mapping a list of `GovActionID × GovActionState`s to a list of
-- `DepositPurpose`s is so common, we give it a name `dpMap`;
-- it's equivalent to `map (λ (id , _) → GovActionDeposit id)`.
dpMap : GovState  List DepositPurpose
dpMap = map (GovActionDeposit  proj₁)

isGADeposit : DepositPurpose  Type
isGADeposit dp = isGADepositᵇ dp  true
  where
  isGADepositᵇ : DepositPurpose  Bool
  isGADepositᵇ (GovActionDeposit _) = true
  isGADepositᵇ _                    = false


govDepsMatch : LState  Type
govDepsMatch ls =
  filterˢ isGADeposit (dom (DepositsOf ls)) ≡ᵉ fromList (dpMap (GovStateOf ls))


module ≡ᵉ = IsEquivalence (≡ᵉ-isEquivalence {DepositPurpose})
pattern UTXOW-UTXOS x = UTXOW⇒UTXO (UTXO-inductive⋯ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ x)
open Equivalence

filterGA :  txid n  filterˢ isGADeposit  GovActionDeposit (txid , n)  ≡ᵉ  GovActionDeposit (txid , n) 
proj₁ (filterGA txid n) {a} x = (proj₂ (from ∈-filter x)) where open Equivalence
proj₂ (filterGA txid n) {a} x = to ∈-filter (ξ (from ∈-singleton x) , x)
  where
  ξ : a  GovActionDeposit (txid , n)  isGADeposit a
  ξ refl = refl

module LEDGER-PROPS (tx : Tx) (Γ : LEnv) (s : LState) where
  open Tx tx renaming (body to txb); open TxBody txb
  open LEnv Γ renaming (pparams to pp)
  open PParams pp using (govActionDeposit)
  open LState s
  open CertState certState
  open DState dState

  -- initial utxo deposits
  utxoDeps : Deposits
  utxoDeps = UTxOState.deposits (LState.utxoSt s)

  -- GovState definitions and lemmas --
  mkAction : GovProposal    GovActionID × GovActionState
  mkAction p n = let open GovProposal p in
    mkGovStatePair
      (PParams.govActionLifetime pp +ᵉ epoch slot)
      (txid , n) returnAddr action prevAction

  -- update GovState with a proposal
  propUpdate : GovState  GovProposal    GovState
  propUpdate s p n = insertGovAction s (mkAction p n)

  -- update GovState with a vote
  voteUpdate : GovState  GovVote  GovState
  voteUpdate s v = addVote s gid voter vote
    where open GovVote v

  -- update GovState with a list of votes and proposals
  updateGovStates : List (GovVote  GovProposal)    GovState  GovState
  updateGovStates [] _ s = s
  updateGovStates (inj₁ v  vps) k s = updateGovStates vps (suc k) (voteUpdate s v)
  updateGovStates (inj₂ p  vps) k s = updateGovStates vps (suc k) (propUpdate s p k)

  -- updateGovStates faithfully represents a step of the LEDGER sts
  STS→GovSt≡ :  {s' : LState}  Γ  s ⇀⦇ tx ,LEDGER⦈ s'
                isValid  true  LState.govSt s'  updateGovStates (txgov txb) 0 (rmOrphanDRepVotes (LState.certState s') (LState.govSt s))
  -- STS→GovSt≡ (LEDGER-V ( _ , _ , _ , x )) refl = STS→updateGovSt≡ (txgov txb) 0 x
  STS→GovSt≡ (LEDGER-V x) refl = STS→updateGovSt≡ (txgov txb) 0 (proj₂ (proj₂ (proj₂ x)))
    where
    STS→updateGovSt≡ : (vps : List (GovVote  GovProposal)) (k : ) {certSt : CertState} {govSt govSt' : GovState}
       (_⊢_⇀⟦_⟧ᵢ*'_ {_⊢_⇀⟦_⟧ᵇ_ = IdSTS}{_⊢_⇀⦇_,GOV⦈_} ( txid , epoch slot , pp , ppolicy , enactState , certSt , dom rewards  , k) govSt vps govSt')
       govSt'  updateGovStates vps k govSt
    STS→updateGovSt≡ [] _ (BS-base Id-nop) = refl
    STS→updateGovSt≡ (inj₁ v  vps) k (BS-ind (GOV-Vote x) h)
      = STS→updateGovSt≡ vps (suc k) h
    STS→updateGovSt≡ (inj₂ p  vps) k (BS-ind (GOV-Propose x) h) = STS→updateGovSt≡ vps (suc k) h

  opaque
    unfolding addVote

    dpMap-rmOrphanDRepVotes :  certState govSt  dpMap (rmOrphanDRepVotes certState govSt)  dpMap govSt
    dpMap-rmOrphanDRepVotes certState govSt = sym (fmap-∘ govSt) -- map proj₁ ∘ map (map₂ _) ≡ map (proj₁ ∘ map₂ _) ≡ map proj₁

module SetoidProperties (tx : Tx) (Γ : LEnv) (s : LState) where
  open Tx tx renaming (body to txb); open TxBody txb
  open LEnv Γ renaming (pparams to pp)
  open PParams pp using (govActionDeposit; poolDeposit)
  govSt : GovState
  govSt = LState.govSt s
  open LEDGER-PROPS tx Γ s using (utxoDeps; propUpdate; mkAction; updateGovStates; STS→GovSt≡; voteUpdate; dpMap-rmOrphanDRepVotes)
  open SetoidReasoning (≡ᵉ-Setoid{DepositPurpose})

  CredDepIsNotGADep :  {a c}  a  CredentialDeposit c  ¬ isGADeposit a
  CredDepIsNotGADep refl ()

  PoolDepIsNotGADep :  {a c}  a  PoolDeposit c  ¬ isGADeposit a
  PoolDepIsNotGADep refl ()

  DRepDepIsNotGADep :  {a c}  a  DRepDeposit c  ¬ isGADeposit a
  DRepDepIsNotGADep refl ()

  filterCR : (c : DCert) (deps : Deposits)
              filterˢ isGADeposit (dom ( deps  certRefund c  ˢ )) ≡ᵉ filterˢ isGADeposit (dom (deps ˢ))
  filterCR (dereg c _) deps = ≡ᵉ.sym $ begin
    filterˢ isGADeposit (dom (deps ˢ)) ≈˘⟨ filter-pres-≡ᵉ $ dom-cong (res-ex-∪ Dec-∈-singleton) 
    filterˢ isGADeposit (dom ((deps  cr)ˢ  (deps  cr )ˢ)) ≈⟨ filter-pres-≡ᵉ dom∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ)  dom ((deps  cr ) ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ))  filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-cong filter0 ≡ᵉ.refl 
      filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-identityˡ $ filterˢ isGADeposit (dom ((deps  cr ) ˢ )) 
    filterˢ isGADeposit (dom ((deps  cr ) ˢ)) 
    where
    cr =  CredentialDeposit c 
    filter0 = filter-∅  _  CredDepIsNotGADep  (from ∈-singleton)  res-dom)
  filterCR (deregdrep c _) deps = ≡ᵉ.sym $ begin
    filterˢ isGADeposit (dom (deps ˢ)) ≈˘⟨ filter-pres-≡ᵉ $ dom-cong (res-ex-∪ Dec-∈-singleton) 
    filterˢ isGADeposit (dom ((deps  cr)ˢ  (deps  cr )ˢ)) ≈⟨ filter-pres-≡ᵉ dom∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ)  dom ((deps  cr ) ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ))  filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-cong filter0 ≡ᵉ.refl 
      filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-identityˡ $ filterˢ isGADeposit (dom ((deps  cr ) ˢ )) 
    filterˢ isGADeposit (dom ((deps  cr ) ˢ)) 
    where
    cr =  DRepDeposit c 
    filter0 = filter-∅  _  DRepDepIsNotGADep  (from ∈-singleton)  res-dom)
  filterCR (delegate _ _ _ _)  deps = filter-pres-≡ᵉ (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (regpool _ _)       deps = filter-pres-≡ᵉ (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (regdrep _ _ _)     deps = filter-pres-≡ᵉ (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (retirepool _ _)    deps = filter-pres-≡ᵉ (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (ccreghot _ _)      deps = filter-pres-≡ᵉ (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (reg _ _)           deps = filter-pres-≡ᵉ (dom-cong (resᵐ-∅ᶜ {M = deps}))

  filterCD : (c : DCert) (deps : Deposits)  filterˢ isGADeposit (dom (certDeposit c pp ˢ)) ≡ᵉ 
  filterCD (delegate _ _ _ _)  deps = filter-∅ λ _  CredDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (reg _ _)           deps = filter-∅ λ _  CredDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (regpool _ _)       deps = filter-∅ λ _  PoolDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (regdrep _ _ _)     deps = filter-∅ λ _  DRepDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (dereg _ _)         deps = ≡ᵉ.trans (filter-pres-≡ᵉ dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  filterCD (retirepool _ _)    deps = ≡ᵉ.trans (filter-pres-≡ᵉ dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  filterCD (deregdrep _ _)     deps = ≡ᵉ.trans (filter-pres-≡ᵉ dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  filterCD (ccreghot _ _)      deps = ≡ᵉ.trans (filter-pres-≡ᵉ dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈

  noGACerts : (cs : List DCert) (deps : Deposits)
     filterˢ isGADeposit (dom (updateCertDeposits pp cs deps)) ≡ᵉ filterˢ isGADeposit (dom deps)
  noGACerts [] _ = filter-pres-≡ᵉ ≡ᵉ.refl
  noGACerts (dcert@(delegate _ _ _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ cd))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-pres-≡ᵉ dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl $ filterCD dcert deps 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(reg _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ cd))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-pres-≡ᵉ dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl $ filterCD dcert deps 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(regpool _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ cd))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-pres-≡ᵉ dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl filter0 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(regdrep _ _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ certDeposit dcert pp))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-pres-≡ᵉ dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl filter0 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(dereg c v)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps  certRefund (dereg c v)))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps  certRefund (dereg c v))) ≈⟨ filterCR dcert deps 
    filterˢ isGADeposit (dom deps) 
  noGACerts (dcert@(deregdrep c v)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps  certRefund (deregdrep c v)))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps  certRefund (deregdrep c v))) ≈⟨ filterCR dcert deps 
    filterˢ isGADeposit (dom deps) 
  noGACerts (retirepool _ _  cs) deps = noGACerts cs deps
  noGACerts (ccreghot _ _  cs) deps = noGACerts cs deps

  opaque
    unfolding addVote

    dpMap∘voteUpdate≡dpMap : (v : GovVote) {govSt : GovState}
       dpMap (voteUpdate govSt v)  dpMap govSt
    dpMap∘voteUpdate≡dpMap v {[]} = refl
    dpMap∘voteUpdate≡dpMap v {(aid , ast)  govSt} =
      cong  x  (GovActionDeposit  proj₁) (aid , ast)  x) (dpMap∘voteUpdate≡dpMap v)

  props-dpMap-votes-invar : (vs : List GovVote) (ps : List GovProposal) {k : } {govSt : GovState}
     fromList (dpMap (updateGovStates (map inj₂ ps ++ map inj₁ vs) k govSt ))
      ≡ᵉ fromList (dpMap (updateGovStates (map inj₂ ps) k govSt))
  props-dpMap-votes-invar [] ps {k} {govSt} = ≡ᵉ.reflexive
    (cong  x  fromList (dpMap (updateGovStates x k govSt))) (++-identityʳ (map inj₂ ps)))
  props-dpMap-votes-invar (v  vs) [] {k} {govSt} = begin
    fromList (dpMap (updateGovStates (map inj₁ (v  vs)) k govSt))
      ≈⟨ props-dpMap-votes-invar vs [] 
    fromList (dpMap (updateGovStates (map inj₂ []) (suc k) (voteUpdate govSt v)))
      ≡⟨ cong fromList (dpMap∘voteUpdate≡dpMap v) 
    fromList (dpMap govSt)
      
  props-dpMap-votes-invar (v  vs) (p  ps) {k} {govSt} = props-dpMap-votes-invar (v  vs) ps

  dpMap-update-∪ :  gSt p k
     fromList (dpMap gSt)   GovActionDeposit (txid , k) 
        ≡ᵉ fromList (dpMap (propUpdate gSt p k))
  dpMap-update-∪ [] p k = ∪-identityˡ (fromList (dpMap [ mkAction p k ]))
  dpMap-update-∪ (g@(gaID₀ , gaSt₀)  gSt) p k
    with (govActionPriority (GovActionState.action gaSt₀ .gaType))
         ≤? (govActionPriority (GovActionState.action (proj₂ (mkAction p k)) .gaType))
  ... | yes _  = begin
      fromList (dpMap (g  gSt))   GovActionDeposit (txid , k) 
        ≈⟨ ∪-cong fromList-∪-singleton ≡ᵉ.refl 
      ( GovActionDeposit gaID₀   fromList (dpMap gSt))   GovActionDeposit (txid , k) 
        ≈⟨ ∪-assoc  GovActionDeposit gaID₀  (fromList (dpMap gSt))  GovActionDeposit (txid , k)  
       GovActionDeposit gaID₀   (fromList (dpMap gSt)   GovActionDeposit (txid , k) )
        ≈⟨ ∪-cong ≡ᵉ.refl (dpMap-update-∪ gSt p k) 
       GovActionDeposit gaID₀   fromList (dpMap (propUpdate gSt p k))
        ≈˘⟨ fromList-∪-singleton 
      fromList (dpMap (g  insertGovAction gSt (mkAction p k)))
        
  ... | no _   = begin
      fromList (dpMap (g  gSt))   GovActionDeposit (txid , k) 
        ≈⟨ ∪-comm (fromList (dpMap (g  gSt)))  GovActionDeposit (txid , k)  
       GovActionDeposit (txid , k)   fromList (dpMap (g  gSt))
        ≈˘⟨ fromList-∪-singleton 
      fromList (dpMap ((mkAction p k)  g  gSt))
        

  connex-lemma :  gSt p ps {k}
     fromList (dpMap (updateGovStates (map inj₂ ps) k gSt))   GovActionDeposit (txid , k + length ps) 
        ≡ᵉ fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate gSt p k)))
  connex-lemma gSt p [] {k} = begin
      fromList (dpMap gSt)   GovActionDeposit (txid , k + 0) 
        ≡⟨ cong  x  fromList (dpMap gSt)   GovActionDeposit (txid , x) ) (+-identityʳ k) 
      fromList (dpMap gSt)   GovActionDeposit (txid , k) 
        ≈⟨ dpMap-update-∪ gSt p k 
      fromList (dpMap (propUpdate gSt p k))
        
  connex-lemma gSt p (p'  ps) {k} = begin
    fromList (dpMap (updateGovStates (map inj₂ (p'  ps)) k gSt))
        GovActionDeposit (txid , k + length (p'  ps)) 
        ≡⟨ cong  x  fromList (dpMap (updateGovStates (map inj₂ (p'  ps)) k gSt))
              GovActionDeposit (txid , x) ) (+-suc k (length ps)) 
    fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate gSt p' k)))
        GovActionDeposit (txid , (suc k) + length ps) 
        ≈˘⟨ ∪-cong (connex-lemma gSt p' ps) ≡ᵉ.refl 
    (fromList (dpMap (updateGovStates (map inj₂ ps) k gSt))
        GovActionDeposit (txid , k + length ps) )
        GovActionDeposit (txid , (suc k) + length ps) 
        ≈⟨ ∪-cong (connex-lemma gSt p ps) ≡ᵉ.refl 
    fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate gSt p k)))
        GovActionDeposit (txid , (suc k) + length ps) 
        ≈⟨ connex-lemma (propUpdate gSt p k) p' ps 
    fromList (dpMap (updateGovStates (map inj₂ (p'  ps)) (suc k) (propUpdate gSt p k)))
        

  utxo-govst-connex :  txp {utxoDs gSt gad}
     filterˢ isGADeposit (dom (utxoDs)) ≡ᵉ fromList (dpMap gSt)
     filterˢ isGADeposit (dom (updateProposalDeposits txp txid gad utxoDs))
      ≡ᵉ fromList (dpMap (updateGovStates (map inj₂ txp) 0 gSt))
  utxo-govst-connex [] x = x
  utxo-govst-connex (p  ps) {utxoDs} {gSt} {gad} x = begin
    filterˢ isGADeposit (dom (updateProposalDeposits (p  ps) txid gad utxoDs))
      ≈⟨ filter-pres-≡ᵉ dom∪⁺≡∪dom 
    filterˢ isGADeposit ((dom (updateProposalDeposits ps txid gad utxoDs))
       (dom{X = Deposits}  GovActionDeposit (txid , length ps) , gad ))
      ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom (updateProposalDeposits ps txid gad utxoDs))  filterˢ isGADeposit
        (dom{X = Deposits}  GovActionDeposit (txid , length ps) , gad )
      ≈⟨ ∪-cong (utxo-govst-connex ps x) (filter-pres-≡ᵉ dom-single≡single) 
    fromList (dpMap (updateGovStates (map inj₂ ps) 0 gSt))
       filterˢ isGADeposit  GovActionDeposit (txid , length ps) 
      ≈⟨ ∪-cong  ≡ᵉ.refl (filterGA txid _) 
    fromList (dpMap (updateGovStates (map inj₂ ps) 0 gSt))   GovActionDeposit (txid , length ps) 
      ≈⟨ connex-lemma gSt p ps 
    fromList (dpMap (updateGovStates (map inj₂ (p  ps)) 0 gSt)) 

  -- The list of natural numbers from 0 up to `n` - 1.
  ⟦0:<_⟧ :   List 
  ⟦0:< 0      = []
  ⟦0:< suc n  = ⟦0:< n  ++ [ n ]

  connex-lemma-rep :  k govSt ps 
    fromList (dpMap (updateGovStates (map inj₂ ps) k govSt))
    ≡ᵉ
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps )
  connex-lemma-rep k govSt [] = begin
    fromList (dpMap govSt)
      ≈˘⟨ ∪-identityʳ (fromList (dpMap govSt)) 
    fromList (dpMap govSt)  fromList []
      ≡⟨⟩
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< 0 ) 
  connex-lemma-rep k govSt (p  ps) = begin
    fromList (dpMap (updateGovStates (map inj₂ (p  ps)) k govSt))
      ≡⟨⟩
    fromList (dpMap (updateGovStates (inj₂ p  map inj₂ ps) k govSt))
      ≡⟨⟩
    fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate govSt p k)))
      ≈˘⟨ connex-lemma govSt p ps {k} 
    fromList (dpMap (updateGovStates (map inj₂ ps) k govSt))   GovActionDeposit (txid , k + length ps) 
      ≈⟨ ∪-cong (connex-lemma-rep k govSt ps) ≡ᵉ.refl 
    (fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps ))   GovActionDeposit (txid , k + length ps) 
      ≈⟨ ∪-assoc (fromList (dpMap govSt)) (fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps ))  GovActionDeposit (txid , k + length ps)  
    fromList (dpMap govSt)  (fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps )   GovActionDeposit (txid , k + length ps) )
      ≡⟨⟩
    fromList (dpMap govSt)  (fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps )  fromList [ GovActionDeposit (txid , k + length ps) ])
      ≈⟨ ∪-cong ≡ᵉ.refl (∪-fromList-++ (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps ) [ GovActionDeposit (txid , k + length ps) ]) 
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length ps  ++ [ GovActionDeposit (txid , k + length ps) ])
      ≡˘⟨ cong  x  fromList (dpMap govSt)  fromList x) (map-++ _ ⟦0:< length ps  [ length ps ]) 
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) (⟦0:< length ps  ++ [ length ps ]))
      ≡⟨⟩
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length (p  ps) ) 

  -- Removing orphan DRep votes does not modify the set of GAs in GovState
  |ᵒ-GAs-pres :  k govSt certState 
    fromList (dpMap (updateGovStates (txgov txb) k (rmOrphanDRepVotes certState govSt)))
    ≡ᵉ
    fromList (dpMap (updateGovStates (txgov txb) k govSt))
  |ᵒ-GAs-pres k govSt certState = begin
    fromList (dpMap (updateGovStates (txgov txb) k (rmOrphanDRepVotes certState govSt)))
      ≈⟨ props-dpMap-votes-invar txvote txprop {k} {rmOrphanDRepVotes certState govSt} 
    fromList (dpMap (updateGovStates (map inj₂ txprop) k (rmOrphanDRepVotes certState govSt)))
      ≈⟨ connex-lemma-rep k (rmOrphanDRepVotes certState govSt) txprop 
    fromList (dpMap (rmOrphanDRepVotes certState govSt))  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length txprop )
      ≡⟨ cong  x  fromList x  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length txprop )) (dpMap-rmOrphanDRepVotes certState govSt) 
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txid , k + i)) ⟦0:< length txprop )
      ≈˘⟨ connex-lemma-rep k govSt txprop 
    fromList (dpMap (updateGovStates (map inj₂ txprop) k govSt))
      ≈˘⟨ props-dpMap-votes-invar txvote txprop {k} {govSt} 
    fromList (dpMap (updateGovStates (txgov txb) k govSt))