{-# OPTIONS --safe #-}

open import Ledger.Conway.Types.GovStructure

module Ledger.Conway.Certs.Properties.PoVLemmas (gs : _) (open GovStructure gs) where



open import Ledger.Conway.Certs gs
open import Ledger.Conway.GovernanceActions gs hiding (yes; no)
open import Ledger.Prelude

open import Axiom.Set.Properties th

open import Algebra using (CommutativeMonoid)
open import Data.Maybe.Properties
open import Data.Nat.Properties using (+-0-monoid; +-0-commutativeMonoid; +-identityʳ; +-identityˡ)
open import Relation.Binary using (IsEquivalence)
open import Relation.Nullary.Decidable
open import Tactic.ReduceDec

open Computational ⦃...⦄

open import stdlib-meta.Tactic.GenError using (genErrors)

open CertState

private variable
  dCert : DCert
  l : List DCert
  A A' B : Type
instance
  _ = +-0-monoid

getCoin-singleton :  _ : DecEq A  {(a , c) : A × Coin}  indexedSumᵛ' id  (a , c)   c
getCoin-singleton = indexedSum-singleton' {M = Coin} (finiteness _)

∪ˡsingleton∈dom :   _ : DecEq A  (m : A  Coin) {(a , c) : A × Coin}
                 a  dom m  getCoin (m ∪ˡ  (a , c) ❵ᵐ)  getCoin m
∪ˡsingleton∈dom m {(a , c)} a∈dom = ≡ᵉ-getCoin (m ∪ˡ  (a , c) ) m (singleton-∈-∪ˡ {m = m} a∈dom)

module _  ( indexedSumᵛ'-∪ :  {A : Type}  _ : DecEq A  (m m' : A  Coin)
                               disjoint (dom m) (dom m')
                               getCoin (m ∪ˡ m')  getCoin m + getCoin m' )
  where
  open ≡-Reasoning
  open Equivalence

  ∪ˡsingleton∉dom :   _ : DecEq A  (m : A  Coin) {(a , c) : A × Coin}
                    a  dom m  getCoin (m ∪ˡ  (a , c) ❵ᵐ)  getCoin m + c
  ∪ˡsingleton∉dom m {(a , c)} a∉dom = begin
    getCoin (m ∪ˡ  a , c ❵ᵐ)
      ≡⟨ indexedSumᵛ'-∪ m  a , c ❵ᵐ
         ( λ x y  a∉dom (subst (_∈ dom m) (from ∈-dom-singleton-pair y) x) ) 
    getCoin m + getCoin  a , c ❵ᵐ
      ≡⟨ cong (getCoin m +_) getCoin-singleton 
    getCoin m + c
      

  ∪ˡsingleton0≡ :  _ : DecEq A   (m : A  Coin) {a : A}  getCoin (m ∪ˡ  (a , 0) ❵ᵐ)  getCoin m
  ∪ˡsingleton0≡ m {a} with a ∈? dom m
  ... | yes a∈dom = ∪ˡsingleton∈dom m a∈dom
  ... | no a∉dom = trans (∪ˡsingleton∉dom m a∉dom) (+-identityʳ (getCoin m))


  CERT-pov : {Γ : CertEnv} {s s'  : CertState}
     Γ  s ⇀⦇ dCert ,CERT⦈ s'
     getCoin s  getCoin s'


  -- Proof.
  CERT-pov (CERT-deleg (DELEG-delegate {rwds = rwds} _)) = sym (∪ˡsingleton0≡ rwds)
  CERT-pov (CERT-deleg (DELEG-reg {rwds = rwds} _)) = sym (∪ˡsingleton0≡ rwds)
  CERT-pov {s =  _ , stᵖ , stᵍ ⟧ᶜˢ}{ _ , stᵖ' , stᵍ' ⟧ᶜˢ}
    (CERT-deleg (DELEG-dereg {c = c} {rwds} {vDelegs = vDelegs}{sDelegs} x)) = begin
    getCoin   vDelegs , sDelegs , rwds  , stᵖ , stᵍ 
      ≡˘⟨ ≡ᵉ-getCoin rwds-∪ˡ-decomp rwds
          ( ≡ᵉ.trans rwds-∪ˡ-∪ (≡ᵉ.trans ∪-sym (res-ex-∪ Dec-∈-singleton)) ) 
    getCoin rwds-∪ˡ-decomp
      ≡⟨ ≡ᵉ-getCoin rwds-∪ˡ-decomp ((rwds   c  ) ∪ˡ  (c , 0) ❵ᵐ) rwds-∪ˡ≡sing-∪ˡ  
    getCoin ((rwds   c  ) ∪ˡ  (c , 0) ❵ᵐ )
      ≡⟨ ∪ˡsingleton0≡ (rwds   c  ) 
    getCoin   vDelegs   c   , sDelegs   c   , rwds   c    , stᵖ' , stᵍ' 
      
    where
    module ≡ᵉ = IsEquivalence (≡ᵉ-isEquivalence {Credential × Coin})
    rwds-∪ˡ-decomp = (rwds   c  ) ∪ˡ (rwds   c  )

    rwds-∪ˡ-∪ : rwds-∪ˡ-decomp ˢ ≡ᵉ (rwds   c  )ˢ  (rwds   c )ˢ
    rwds-∪ˡ-∪ = disjoint-∪ˡ-∪ (disjoint-sym res-ex-disjoint)

    disj : disjoint (dom ((rwds   c ❵ˢ ) ˢ)) (dom ( c , 0 ❵ᵐ ˢ))
    disj {a} a∈res a∈dom  = res-comp-dom a∈res (dom-single→single a∈dom)

    rwds-∪ˡ≡sing-∪ˡ : rwds-∪ˡ-decomp ˢ ≡ᵉ ((rwds   c  ) ∪ˡ  (c , 0) ❵ᵐ )ˢ
    rwds-∪ˡ≡sing-∪ˡ = ≡ᵉ.trans rwds-∪ˡ-∪
                              ( ≡ᵉ.trans (∪-cong ≡ᵉ.refl (res-singleton'{m = rwds} x))
                                         (≡ᵉ.sym $ disjoint-∪ˡ-∪ disj) )
  CERT-pov (CERT-pool x) = refl
  CERT-pov (CERT-vdel x) = refl

  injOn : (wdls : RwdAddr  Coin)
           ∀[ a  dom (wdls ˢ) ] NetworkIdOf a  NetworkId
           InjectiveOn (dom (wdls ˢ)) RwdAddr.stake
  injOn _ h {record { stake = stakex }} {record { stake = stakey }} x∈ y∈ refl =
    cong  u  record { net = u ; stake = stakex }) (trans (h x∈) (sym (h y∈)))

  module CERTSpov
    -- TODO: prove some or all of the following assumptions, used in roof of `CERTBASE-pov`.
    ( sumConstZero    :  {A : Type}  _ : DecEq A  {X :  A}  getCoin (constMap X 0)  0 )
    ( res-decomp      :  {A : Type}  _ : DecEq A  (m m' : A  Coin)
                          (m ∪ˡ m')ˢ ≡ᵉ (m ∪ˡ (m'  dom (m ˢ) ))ˢ )
    ( getCoin-cong    :  {A : Type}  _ : DecEq A  (s : A  Coin) (s' :  (A × Coin))  s ˢ ≡ᵉ s'
                          indexedSum' proj₂ (s ˢ)  indexedSum' proj₂ s' )
    ( ≡ᵉ-getCoinˢ     :  {A A' : Type}  _ : DecEq A   _ : DecEq A'  (s :  (A × Coin)) {f : A  A'}
                          InjectiveOn (dom s) f  getCoin (mapˢ (map₁ f) s)  getCoin s )
    where


    CERTBASE-pov : {Γ : CertEnv} {s s' : CertState}
       ∀[ a  dom (CertEnv.wdrls Γ) ] NetworkIdOf a  NetworkId
       Γ  s ⇀⦇ _ ,CERTBASE⦈ s'
       getCoin s  getCoin s' + getCoin (CertEnv.wdrls Γ)


    -- Proof.
    CERTBASE-pov  {Γ   = Γ}
                  {s   = cs}
                  {s'  = cs'}
                  validNetId
                  (CERT-base {pp}{vs}{e}{dreps}{wdrls} (_ , wdrlsCC⊆rwds)) =
      let
        open DState (dState cs )
        open DState (dState cs') renaming (rewards to rewards')
        module ≡ᵉ       = IsEquivalence (≡ᵉ-isEquivalence {Credential × Coin})
        wdrlsCC         = mapˢ (map₁ RwdAddr.stake) (wdrls ˢ)
        zeroMap         = constMap (mapˢ RwdAddr.stake (dom wdrls)) 0
        rwds-∪ˡ-decomp  = (rewards  dom wdrlsCC ) ∪ˡ (rewards  dom wdrlsCC)
      in
        begin
          getCoin rewards
            ≡˘⟨ ≡ᵉ-getCoin rwds-∪ˡ-decomp rewards
                ( ≡ᵉ.trans (disjoint-∪ˡ-∪ (disjoint-sym res-ex-disjoint))
                           (≡ᵉ.trans ∪-sym (res-ex-∪ (_∈? dom wdrlsCC))) ) 
          getCoin rwds-∪ˡ-decomp
            ≡⟨ indexedSumᵛ'-∪ (rewards  dom wdrlsCC ) (rewards  dom wdrlsCC)
                              (disjoint-sym res-ex-disjoint) 
          getCoin (rewards  dom wdrlsCC ) + getCoin (rewards  dom wdrlsCC )
            ≡⟨ cong (getCoin (rewards  dom wdrlsCC ) +_)
               ( getCoin-cong (rewards  dom wdrlsCC) wdrlsCC (res-subset{m = rewards} wdrlsCC⊆rwds) ) 
          getCoin (rewards  dom wdrlsCC ) + getCoin wdrlsCC
            ≡⟨ cong (getCoin (rewards  dom wdrlsCC ) +_) (≡ᵉ-getCoinˢ (wdrls ˢ) (injOn wdrls validNetId)) 
          getCoin (rewards  dom wdrlsCC ) + getCoin wdrls
            ≡˘⟨ cong (_+ getCoin wdrls)
                ( begin
                  getCoin (zeroMap ∪ˡ rewards)
                    ≡⟨ ≡ᵉ-getCoin (zeroMap ∪ˡ rewards) (zeroMap ∪ˡ (rewards  dom zeroMap ))
                                  (res-decomp zeroMap rewards) 
                  getCoin (zeroMap ∪ˡ (rewards  dom zeroMap ))
                    ≡⟨ indexedSumᵛ'-∪ zeroMap (rewards  dom zeroMap )
                                      (disjoint-sym res-comp-dom) 
                  getCoin zeroMap + getCoin (rewards  dom zeroMap )
                    ≡⟨ cong  u  u + getCoin (rewards  dom zeroMap )) sumConstZero 
                  0 + getCoin (rewards  (dom zeroMap) )
                    ≡⟨ +-identityˡ (getCoin (rewards  dom zeroMap )) 
                  getCoin (rewards  dom zeroMap )
                    ≡⟨ ≡ᵉ-getCoin (rewards  dom zeroMap ) (rewards  dom wdrlsCC )
                       ( res-comp-cong
                         ( ⊆-Transitive (proj₁ constMap-dom) (proj₂ dom-mapˡ≡map-dom)
                         , ⊆-Transitive (proj₁ dom-mapˡ≡map-dom) (proj₂ constMap-dom) ) ) 
                  getCoin (rewards  dom wdrlsCC )
                     ) 
          getCoin (zeroMap ∪ˡ rewards) + getCoin wdrls
            


    sts-pov : {Γ : CertEnv} {s₁ sₙ : CertState}
       ReflexiveTransitiveClosure {sts = _⊢_⇀⦇_,CERT⦈_} Γ s₁ l sₙ
       getCoin s₁  getCoin sₙ


    -- Proof.
    sts-pov (BS-base Id-nop) = refl
    sts-pov (BS-ind x xs) = trans (CERT-pov x) (sts-pov xs)