{-# OPTIONS --safe #-}
open import Ledger.Conway.Types.GovStructure
module Ledger.Conway.Certs.Properties.PoVLemmas (gs : _) (open GovStructure gs) where
open import Ledger.Conway.Certs gs
open import Ledger.Conway.GovernanceActions gs hiding (yes; no)
open import Ledger.Prelude
open import Axiom.Set.Properties th
open import Algebra using (CommutativeMonoid)
open import Data.Maybe.Properties
open import Data.Nat.Properties using (+-0-monoid; +-0-commutativeMonoid; +-identityʳ; +-identityˡ)
open import Relation.Binary using (IsEquivalence)
open import Relation.Nullary.Decidable
open import Tactic.ReduceDec
open Computational ⦃...⦄
open import stdlib-meta.Tactic.GenError using (genErrors)
open CertState
private variable
dCert : DCert
l : List DCert
A A' B : Type
instance
_ = +-0-monoid
getCoin-singleton : ⦃ _ : DecEq A ⦄ {(a , c) : A × Coin} → indexedSumᵛ' id ❴ (a , c) ❵ ≡ c
getCoin-singleton = indexedSum-singleton' {M = Coin} (finiteness _)
∪ˡsingleton∈dom : ⦃ _ : DecEq A ⦄ (m : A ⇀ Coin) {(a , c) : A × Coin}
→ a ∈ dom m → getCoin (m ∪ˡ ❴ (a , c) ❵ᵐ) ≡ getCoin m
∪ˡsingleton∈dom m {(a , c)} a∈dom = ≡ᵉ-getCoin (m ∪ˡ ❴ (a , c) ❵) m (singleton-∈-∪ˡ {m = m} a∈dom)
module _ ( indexedSumᵛ'-∪ : {A : Type} ⦃ _ : DecEq A ⦄ (m m' : A ⇀ Coin)
→ disjoint (dom m) (dom m')
→ getCoin (m ∪ˡ m') ≡ getCoin m + getCoin m' )
where
open ≡-Reasoning
open Equivalence
∪ˡsingleton∉dom : ⦃ _ : DecEq A ⦄ (m : A ⇀ Coin) {(a , c) : A × Coin}
→ a ∉ dom m → getCoin (m ∪ˡ ❴ (a , c) ❵ᵐ) ≡ getCoin m + c
∪ˡsingleton∉dom m {(a , c)} a∉dom = begin
getCoin (m ∪ˡ ❴ a , c ❵ᵐ)
≡⟨ indexedSumᵛ'-∪ m ❴ a , c ❵ᵐ
( λ x y → a∉dom (subst (_∈ dom m) (from ∈-dom-singleton-pair y) x) ) ⟩
getCoin m + getCoin ❴ a , c ❵ᵐ
≡⟨ cong (getCoin m +_) getCoin-singleton ⟩
getCoin m + c
∎
∪ˡsingleton0≡ : ⦃ _ : DecEq A ⦄ → (m : A ⇀ Coin) {a : A} → getCoin (m ∪ˡ ❴ (a , 0) ❵ᵐ) ≡ getCoin m
∪ˡsingleton0≡ m {a} with a ∈? dom m
... | yes a∈dom = ∪ˡsingleton∈dom m a∈dom
... | no a∉dom = trans (∪ˡsingleton∉dom m a∉dom) (+-identityʳ (getCoin m))
CERT-pov : {Γ : CertEnv} {s s' : CertState}
→ Γ ⊢ s ⇀⦇ dCert ,CERT⦈ s'
→ getCoin s ≡ getCoin s'
CERT-pov (CERT-deleg (DELEG-delegate {rwds = rwds} _)) = sym (∪ˡsingleton0≡ rwds)
CERT-pov (CERT-deleg (DELEG-reg {rwds = rwds} _)) = sym (∪ˡsingleton0≡ rwds)
CERT-pov {s = ⟦ _ , stᵖ , stᵍ ⟧ᶜˢ}{⟦ _ , stᵖ' , stᵍ' ⟧ᶜˢ}
(CERT-deleg (DELEG-dereg {c = c} {rwds} {vDelegs = vDelegs}{sDelegs} x)) = begin
getCoin ⟦ ⟦ vDelegs , sDelegs , rwds ⟧ , stᵖ , stᵍ ⟧
≡˘⟨ ≡ᵉ-getCoin rwds-∪ˡ-decomp rwds
( ≡ᵉ.trans rwds-∪ˡ-∪ (≡ᵉ.trans ∪-sym (res-ex-∪ Dec-∈-singleton)) ) ⟩
getCoin rwds-∪ˡ-decomp
≡⟨ ≡ᵉ-getCoin rwds-∪ˡ-decomp ((rwds ∣ ❴ c ❵ ᶜ) ∪ˡ ❴ (c , 0) ❵ᵐ) rwds-∪ˡ≡sing-∪ˡ ⟩
getCoin ((rwds ∣ ❴ c ❵ ᶜ) ∪ˡ ❴ (c , 0) ❵ᵐ )
≡⟨ ∪ˡsingleton0≡ (rwds ∣ ❴ c ❵ ᶜ) ⟩
getCoin ⟦ ⟦ vDelegs ∣ ❴ c ❵ ᶜ , sDelegs ∣ ❴ c ❵ ᶜ , rwds ∣ ❴ c ❵ ᶜ ⟧ , stᵖ' , stᵍ' ⟧
∎
where
module ≡ᵉ = IsEquivalence (≡ᵉ-isEquivalence {Credential × Coin})
rwds-∪ˡ-decomp = (rwds ∣ ❴ c ❵ ᶜ) ∪ˡ (rwds ∣ ❴ c ❵ )
rwds-∪ˡ-∪ : rwds-∪ˡ-decomp ˢ ≡ᵉ (rwds ∣ ❴ c ❵ ᶜ)ˢ ∪ (rwds ∣ ❴ c ❵)ˢ
rwds-∪ˡ-∪ = disjoint-∪ˡ-∪ (disjoint-sym res-ex-disjoint)
disj : disjoint (dom ((rwds ∣ ❴ c ❵ˢ ᶜ) ˢ)) (dom (❴ c , 0 ❵ᵐ ˢ))
disj {a} a∈res a∈dom = res-comp-dom a∈res (dom-single→single a∈dom)
rwds-∪ˡ≡sing-∪ˡ : rwds-∪ˡ-decomp ˢ ≡ᵉ ((rwds ∣ ❴ c ❵ ᶜ) ∪ˡ ❴ (c , 0) ❵ᵐ )ˢ
rwds-∪ˡ≡sing-∪ˡ = ≡ᵉ.trans rwds-∪ˡ-∪
( ≡ᵉ.trans (∪-cong ≡ᵉ.refl (res-singleton'{m = rwds} x))
(≡ᵉ.sym $ disjoint-∪ˡ-∪ disj) )
CERT-pov (CERT-pool x) = refl
CERT-pov (CERT-vdel x) = refl
injOn : (wdls : RwdAddr ⇀ Coin)
→ ∀[ a ∈ dom (wdls ˢ) ] NetworkIdOf a ≡ NetworkId
→ InjectiveOn (dom (wdls ˢ)) RwdAddr.stake
injOn _ h {record { stake = stakex }} {record { stake = stakey }} x∈ y∈ refl =
cong (λ u → record { net = u ; stake = stakex }) (trans (h x∈) (sym (h y∈)))
module CERTSpov
( sumConstZero : {A : Type} ⦃ _ : DecEq A ⦄ {X : ℙ A} → getCoin (constMap X 0) ≡ 0 )
( res-decomp : {A : Type} ⦃ _ : DecEq A ⦄ (m m' : A ⇀ Coin)
→ (m ∪ˡ m')ˢ ≡ᵉ (m ∪ˡ (m' ∣ dom (m ˢ) ᶜ))ˢ )
( getCoin-cong : {A : Type} ⦃ _ : DecEq A ⦄ (s : A ⇀ Coin) (s' : ℙ (A × Coin)) → s ˢ ≡ᵉ s'
→ indexedSum' proj₂ (s ˢ) ≡ indexedSum' proj₂ s' )
( ≡ᵉ-getCoinˢ : {A A' : Type} ⦃ _ : DecEq A ⦄ ⦃ _ : DecEq A' ⦄ (s : ℙ (A × Coin)) {f : A → A'}
→ InjectiveOn (dom s) f → getCoin (mapˢ (map₁ f) s) ≡ getCoin s )
where
CERTBASE-pov : {Γ : CertEnv} {s s' : CertState}
→ ∀[ a ∈ dom (CertEnv.wdrls Γ) ] NetworkIdOf a ≡ NetworkId
→ Γ ⊢ s ⇀⦇ _ ,CERTBASE⦈ s'
→ getCoin s ≡ getCoin s' + getCoin (CertEnv.wdrls Γ)
CERTBASE-pov {Γ = Γ}
{s = cs}
{s' = cs'}
validNetId
(CERT-base {pp}{vs}{e}{dreps}{wdrls} (_ , wdrlsCC⊆rwds)) =
let
open DState (dState cs )
open DState (dState cs') renaming (rewards to rewards')
module ≡ᵉ = IsEquivalence (≡ᵉ-isEquivalence {Credential × Coin})
wdrlsCC = mapˢ (map₁ RwdAddr.stake) (wdrls ˢ)
zeroMap = constMap (mapˢ RwdAddr.stake (dom wdrls)) 0
rwds-∪ˡ-decomp = (rewards ∣ dom wdrlsCC ᶜ) ∪ˡ (rewards ∣ dom wdrlsCC)
in
begin
getCoin rewards
≡˘⟨ ≡ᵉ-getCoin rwds-∪ˡ-decomp rewards
( ≡ᵉ.trans (disjoint-∪ˡ-∪ (disjoint-sym res-ex-disjoint))
(≡ᵉ.trans ∪-sym (res-ex-∪ (_∈? dom wdrlsCC))) ) ⟩
getCoin rwds-∪ˡ-decomp
≡⟨ indexedSumᵛ'-∪ (rewards ∣ dom wdrlsCC ᶜ) (rewards ∣ dom wdrlsCC)
(disjoint-sym res-ex-disjoint) ⟩
getCoin (rewards ∣ dom wdrlsCC ᶜ) + getCoin (rewards ∣ dom wdrlsCC )
≡⟨ cong (getCoin (rewards ∣ dom wdrlsCC ᶜ) +_)
( getCoin-cong (rewards ∣ dom wdrlsCC) wdrlsCC (res-subset{m = rewards} wdrlsCC⊆rwds) ) ⟩
getCoin (rewards ∣ dom wdrlsCC ᶜ) + getCoin wdrlsCC
≡⟨ cong (getCoin (rewards ∣ dom wdrlsCC ᶜ) +_) (≡ᵉ-getCoinˢ (wdrls ˢ) (injOn wdrls validNetId)) ⟩
getCoin (rewards ∣ dom wdrlsCC ᶜ) + getCoin wdrls
≡˘⟨ cong (_+ getCoin wdrls)
( begin
getCoin (zeroMap ∪ˡ rewards)
≡⟨ ≡ᵉ-getCoin (zeroMap ∪ˡ rewards) (zeroMap ∪ˡ (rewards ∣ dom zeroMap ᶜ))
(res-decomp zeroMap rewards) ⟩
getCoin (zeroMap ∪ˡ (rewards ∣ dom zeroMap ᶜ))
≡⟨ indexedSumᵛ'-∪ zeroMap (rewards ∣ dom zeroMap ᶜ)
(disjoint-sym res-comp-dom) ⟩
getCoin zeroMap + getCoin (rewards ∣ dom zeroMap ᶜ)
≡⟨ cong (λ u → u + getCoin (rewards ∣ dom zeroMap ᶜ)) sumConstZero ⟩
0 + getCoin (rewards ∣ (dom zeroMap) ᶜ)
≡⟨ +-identityˡ (getCoin (rewards ∣ dom zeroMap ᶜ)) ⟩
getCoin (rewards ∣ dom zeroMap ᶜ)
≡⟨ ≡ᵉ-getCoin (rewards ∣ dom zeroMap ᶜ) (rewards ∣ dom wdrlsCC ᶜ)
( res-comp-cong
( ⊆-Transitive (proj₁ constMap-dom) (proj₂ dom-mapˡ≡map-dom)
, ⊆-Transitive (proj₁ dom-mapˡ≡map-dom) (proj₂ constMap-dom) ) ) ⟩
getCoin (rewards ∣ dom wdrlsCC ᶜ)
∎ ) ⟩
getCoin (zeroMap ∪ˡ rewards) + getCoin wdrls
∎
sts-pov : {Γ : CertEnv} {s₁ sₙ : CertState}
→ ReflexiveTransitiveClosure {sts = _⊢_⇀⦇_,CERT⦈_} Γ s₁ l sₙ
→ getCoin s₁ ≡ getCoin sₙ
sts-pov (BS-base Id-nop) = refl
sts-pov (BS-ind x xs) = trans (CERT-pov x) (sts-pov xs)