{-# OPTIONS --safe #-}
open import Ledger.Prelude hiding (_*_)
open Computational ⦃...⦄; open HasDecPartialOrder ⦃...⦄
open import Ledger.Transaction
module Ledger.Conway.Conformance.PPUp.Properties (txs : _) (open TransactionStructure txs) where
open import Ledger.Conway.Conformance.PPUp txs
private
open import Agda.Builtin.FromNat
open import Algebra; open Semiring Slotʳ using (_*_)
open import Algebra.Literals; open Semiring-Lit Slotʳ
Current-Property : PPUpdateEnv → Update → Type
Current-Property Γ (pup , e) = let open PPUpdateEnv Γ in
dom pup ⊆ dom genDelegs
× All (isViableUpdate pparams) (range pup)
× slot + 2 * StabilityWindow < firstSlot (epoch slot + 1)
× epoch slot ≡ e
Future-Property : PPUpdateEnv → Update → Type
Future-Property Γ (pup , e) = let open PPUpdateEnv Γ in
dom pup ⊆ dom genDelegs
× All (isViableUpdate pparams) (range pup)
× firstSlot (epoch slot + 1) ≤ slot + 2 * StabilityWindow
× epoch slot + 1 ≡ e
instance
Computational-PPUP : Computational _⊢_⇀⦇_,PPUP⦈_ String
Computational-PPUP .computeProof Γ s = λ where
(just (pup , e)) →
case ¿ Current-Property Γ (pup , e) ¿
,′ ¿ Future-Property Γ (pup , e) ¿ of λ where
(yes (p₁ , p₂ , p₃ , p₄) , _) → success (-, PPUpdateCurrent p₁ p₂ p₃ p₄)
(_ , yes (p₁ , p₂ , p₃ , p₄)) → success (-, PPUpdateFuture p₁ p₂ p₃ p₄)
(no _ , no _) → failure "Failed in PPUP"
nothing → success (-, PPUpdateEmpty)
Computational-PPUP .completeness Γ _ .nothing _ PPUpdateEmpty = refl
Computational-PPUP .completeness Γ _ (just up) _ p with p
Computational-PPUP .completeness Γ _ (just up) _ _ | PPUpdateCurrent p₁ p₂ p₃ p₄
rewrite dec-yes ¿ Current-Property Γ up ¿ (p₁ , p₂ , p₃ , p₄) .proj₂ = refl
Computational-PPUP .completeness Γ _ (just up) _ _ | PPUpdateFuture p₁ p₂ p₃ p₄
with ¿ Current-Property Γ up ¿ | ¿ Future-Property Γ up ¿
... | yes (_ , _ , ¬p₃ , _) | _ = ⊥-elim
$ <⇒¬>⊎≈ {A = Slot} ¬p₃ (≤⇔<∨≈ .Equivalence.to p₃)
... | no _ | yes p = refl
... | no _ | no ¬p = ⊥-elim (¬p (p₁ , p₂ , p₃ , p₄))