{-# OPTIONS --safe #-}

open import Ledger.Prelude
open import Ledger.Transaction
open import Ledger.Abstract
import Ledger.Conway.Conformance.Certs

module Ledger.Conway.Conformance.Ledger.Properties
  (txs : _) (open TransactionStructure txs) (open Ledger.Conway.Conformance.Certs govStructure)
  (abs : AbstractFunctions txs) (open AbstractFunctions abs)
  where

open import Axiom.Set.Properties th
open import Ledger.Conway.Conformance.Chain txs abs
open import Ledger.Enact govStructure
open import Ledger.Conway.Conformance.Epoch txs abs
open import Ledger.Conway.Conformance.Certs.Properties govStructure
open import Ledger.Gov txs
open import Ledger.Gov.Properties txs
open import Ledger.Conway.Conformance.Ledger txs abs
open import Ledger.Ratify txs hiding (vote)
open import Ledger.Conway.Conformance.Utxo txs abs
open import Ledger.Conway.Conformance.Utxo.Properties txs abs
open import Ledger.Conway.Conformance.Utxow txs abs
open import Ledger.Conway.Conformance.Utxow.Properties txs abs

open import Data.Bool.Properties using (¬-not)
open import Data.List.Base using (filter)
open import Data.List.Subpermutations using (∈ˡ-map-filter)
open import Data.List.Properties using (++-identityʳ; map-++; ++-assoc; length-++)
open import Data.List.Membership.Propositional.Properties using (∈-filter⁺; map-∈↔)
open import Data.Product.Properties using (×-≡,≡←≡)
open import Data.Nat.Properties using (+-0-monoid; +-identityʳ; +-suc; +-comm)
open import Relation.Binary using (IsEquivalence)
open import Relation.Unary using (Decidable)

open import Ledger.Conway.Conformance.Equivalence.Certs txs abs
open import Ledger.Conway.Conformance.Equivalence.Convert

import Function.Related.Propositional as R

import Relation.Binary.Reasoning.Setoid as SetoidReasoning

instance _ = +-0-monoid

open import Interface.ComputationalRelation

-- ** Proof that LEDGER is computational.

instance
  _ = Monad-ComputationResult

  Computational-LEDGER : Computational _⊢_⇀⦇_,LEDGER⦈_ String
  Computational-LEDGER = record {go}
    where
    open Computational ⦃...⦄ renaming (computeProof to comp; completeness to complete)
    computeUtxow = comp {STS = _⊢_⇀⦇_,UTXOW⦈_}
    computeCerts = comp {STS = _⊢_⇀⦇_,CERTS⦈_}
    computeGov   = comp {STS = _⊢_⇀⦇_,GOVS⦈_}

    module go
      (Γ : LEnv)   (let open LEnv Γ)
      (s : LState) (let open LState s)
      (tx : Tx)    (let open Tx tx renaming (body to txb); open TxBody txb)
      where
      utxoΓ = UTxOEnv  record { LEnv Γ }
      certΓ = CertEnv   epoch slot , pparams , txvote , txwdrls , _ 
      govΓ : CertState  GovEnv
      govΓ certState =  txid , epoch slot , pparams , ppolicy , enactState , conv certState , _ 

      computeProof : ComputationResult String (∃[ s' ] Γ  s ⇀⦇ tx ,LEDGER⦈ s')
      computeProof = case isValid  true of λ where
        (yes p)  do
          (utxoSt' , utxoStep)  computeUtxow utxoΓ utxoSt tx
          (certSt' , certStep)  computeCerts certΓ certState txcerts
          (govSt'  , govStep)   computeGov (govΓ certSt') (rmOrphanDRepVotes (conv certSt') govSt) (txgov txb)
          success (_ , LEDGER-V⋯ p utxoStep certStep govStep)
        (no ¬p)  do
          (utxoSt' , utxoStep)  computeUtxow utxoΓ utxoSt tx
          success (_ , LEDGER-I⋯ (¬-not ¬p) utxoStep)

      completeness :  s'  Γ  s ⇀⦇ tx ,LEDGER⦈ s'  (proj₁ <$> computeProof)  success s'
      completeness  ls' (LEDGER-V⋯ v utxoStep certStep govStep)
        with isValid  true
      ... | no ¬v = contradiction v ¬v
      ... | yes refl
        with computeUtxow utxoΓ utxoSt tx | complete _ _ _ _ utxoStep
      ... | success (utxoSt' , _) | refl
        with computeCerts certΓ certState txcerts | complete _ _ _ _ certStep
      ... | success (certSt' , _) | refl
        with computeGov (govΓ certSt') (rmOrphanDRepVotes (conv certSt') govSt) (txgov txb) | complete {STS = _⊢_⇀⦇_,GOVS⦈_} (govΓ certSt') _ _ _ govStep
      ... | success (govSt' , _) | refl = refl
      completeness ls' (LEDGER-I⋯ i utxoStep)
        with isValid  true
      ... | yes refl = case i of λ ()
      ... | no ¬v
        with computeUtxow utxoΓ utxoSt tx | complete _ _ _ _ utxoStep
      ... | success (utxoSt' , _) | refl = refl

Computational-LEDGERS : Computational _⊢_⇀⦇_,LEDGERS⦈_ String
Computational-LEDGERS = it