{-# OPTIONS --safe #-}
open import Ledger.Prelude
open import Ledger.Transaction
open import Ledger.Abstract
import Ledger.Conway.Conformance.Certs
module Ledger.Conway.Conformance.Ledger.Properties
(txs : _) (open TransactionStructure txs) (open Ledger.Conway.Conformance.Certs govStructure)
(abs : AbstractFunctions txs) (open AbstractFunctions abs)
where
open import Axiom.Set.Properties th
open import Ledger.Conway.Conformance.Chain txs abs
open import Ledger.Enact govStructure
open import Ledger.Conway.Conformance.Epoch txs abs
open import Ledger.Conway.Conformance.Certs.Properties govStructure
open import Ledger.Gov txs
open import Ledger.Gov.Properties txs
open import Ledger.Conway.Conformance.Ledger txs abs
open import Ledger.Ratify txs hiding (vote)
open import Ledger.Conway.Conformance.Utxo txs abs
open import Ledger.Conway.Conformance.Utxo.Properties txs abs
open import Ledger.Conway.Conformance.Utxow txs abs
open import Ledger.Conway.Conformance.Utxow.Properties txs abs
open import Data.Bool.Properties using (¬-not)
open import Data.List.Base using (filter)
open import Data.List.Subpermutations using (∈ˡ-map-filter)
open import Data.List.Properties using (++-identityʳ; map-++; ++-assoc; length-++)
open import Data.List.Membership.Propositional.Properties using (∈-filter⁺; map-∈↔)
open import Data.Product.Properties using (×-≡,≡←≡)
open import Data.Nat.Properties using (+-0-monoid; +-identityʳ; +-suc; +-comm)
open import Relation.Binary using (IsEquivalence)
open import Relation.Unary using (Decidable)
open import Ledger.Conway.Conformance.Equivalence.Certs txs abs
open import Ledger.Conway.Conformance.Equivalence.Convert
import Function.Related.Propositional as R
import Relation.Binary.Reasoning.Setoid as SetoidReasoning
instance _ = +-0-monoid
open import Interface.ComputationalRelation
instance
_ = Monad-ComputationResult
Computational-LEDGER : Computational _⊢_⇀⦇_,LEDGER⦈_ String
Computational-LEDGER = record {go}
where
open Computational ⦃...⦄ renaming (computeProof to comp; completeness to complete)
computeUtxow = comp {STS = _⊢_⇀⦇_,UTXOW⦈_}
computeCerts = comp {STS = _⊢_⇀⦇_,CERTS⦈_}
computeGov = comp {STS = _⊢_⇀⦇_,GOVS⦈_}
module go
(Γ : LEnv) (let open LEnv Γ)
(s : LState) (let open LState s)
(tx : Tx) (let open Tx tx renaming (body to txb); open TxBody txb)
where
utxoΓ = UTxOEnv ∋ record { LEnv Γ }
certΓ = CertEnv ∋ ⟦ epoch slot , pparams , txvote , txwdrls , _ ⟧
govΓ : CertState → GovEnv
govΓ certState = ⟦ txid , epoch slot , pparams , ppolicy , enactState , conv certState , _ ⟧
computeProof : ComputationResult String (∃[ s' ] Γ ⊢ s ⇀⦇ tx ,LEDGER⦈ s')
computeProof = case isValid ≟ true of λ where
(yes p) → do
(utxoSt' , utxoStep) ← computeUtxow utxoΓ utxoSt tx
(certSt' , certStep) ← computeCerts certΓ certState txcerts
(govSt' , govStep) ← computeGov (govΓ certSt') (rmOrphanDRepVotes (conv certSt') govSt) (txgov txb)
success (_ , LEDGER-V⋯ p utxoStep certStep govStep)
(no ¬p) → do
(utxoSt' , utxoStep) ← computeUtxow utxoΓ utxoSt tx
success (_ , LEDGER-I⋯ (¬-not ¬p) utxoStep)
completeness : ∀ s' → Γ ⊢ s ⇀⦇ tx ,LEDGER⦈ s' → (proj₁ <$> computeProof) ≡ success s'
completeness ls' (LEDGER-V⋯ v utxoStep certStep govStep)
with isValid ≟ true
... | no ¬v = contradiction v ¬v
... | yes refl
with computeUtxow utxoΓ utxoSt tx | complete _ _ _ _ utxoStep
... | success (utxoSt' , _) | refl
with computeCerts certΓ certState txcerts | complete _ _ _ _ certStep
... | success (certSt' , _) | refl
with computeGov (govΓ certSt') (rmOrphanDRepVotes (conv certSt') govSt) (txgov txb) | complete {STS = _⊢_⇀⦇_,GOVS⦈_} (govΓ certSt') _ _ _ govStep
... | success (govSt' , _) | refl = refl
completeness ls' (LEDGER-I⋯ i utxoStep)
with isValid ≟ true
... | yes refl = case i of λ ()
... | no ¬v
with computeUtxow utxoΓ utxoSt tx | complete _ _ _ _ utxoStep
... | success (utxoSt' , _) | refl = refl
Computational-LEDGERS : Computational _⊢_⇀⦇_,LEDGERS⦈_ String
Computational-LEDGERS = it