{-# OPTIONS --safe #-}
open import Ledger.Prelude
open import Ledger.Abstract
open import Ledger.Transaction using (TransactionStructure)
open import Data.Product using (_×_; _,_)
open import Relation.Binary.PropositionalEquality
open import Ledger.Conway.Conformance.Equivalence.Convert
module Ledger.Conway.Conformance.Equivalence.Certs
(txs : _) (open TransactionStructure txs)
(abs : AbstractFunctions txs) (open AbstractFunctions abs)
where
private
module L where
open import Ledger.Certs govStructure public
module C where
open import Ledger.Conway.Conformance.Certs govStructure public
instance
DStateToConf : L.Deposits ⊢ L.DState ⭆ C.DState
DStateToConf .convⁱ deposits stᵈ =
let open L.DState stᵈ in
⟦ voteDelegs , stakeDelegs , rewards , deposits ⟧
DStateFromConf : C.DState ⭆ L.DState
DStateFromConf .convⁱ _ dState =
let open C.DState dState in
⟦ voteDelegs , stakeDelegs , rewards ⟧
GStateToConf : L.Deposits ⊢ L.GState ⭆ C.GState
GStateToConf .convⁱ deposits stᵍ =
let open L.GState stᵍ in
⟦ dreps , ccHotKeys , deposits ⟧
GStateFromConf : C.GState ⭆ L.GState
GStateFromConf .convⁱ deposits gState =
let open C.GState gState in
⟦ dreps , ccHotKeys ⟧
data ValidDepsᵈ (pp : PParams) (deps : L.Deposits) : List L.DCert → Set where
[] : ValidDepsᵈ pp deps []
delegate : ∀ {c del kh v certs}
→ ValidDepsᵈ pp (C.updateCertDeposit pp (L.delegate c del kh v) deps) certs
→ ValidDepsᵈ pp deps (L.delegate c del kh v ∷ certs)
dereg : ∀ {c md d certs}
→ (L.CredentialDeposit c , d) ∈ deps
→ md ≡ nothing ⊎ md ≡ just d
→ ValidDepsᵈ pp (C.updateCertDeposit pp (L.dereg c md) deps) certs
→ ValidDepsᵈ pp deps (L.dereg c md ∷ certs)
regdrep : ∀ {c v a certs}
→ ValidDepsᵈ pp deps certs
→ ValidDepsᵈ pp deps (L.regdrep c v a ∷ certs)
deregdrep : ∀ {c d certs}
→ ValidDepsᵈ pp deps certs
→ ValidDepsᵈ pp deps (L.deregdrep c d ∷ certs)
regpool : ∀ {kh p certs}
→ ValidDepsᵈ pp deps certs
→ ValidDepsᵈ pp deps (L.regpool kh p ∷ certs)
retirepool : ∀ {kh e certs}
→ ValidDepsᵈ pp deps certs
→ ValidDepsᵈ pp deps (L.retirepool kh e ∷ certs)
ccreghot : ∀ {c v certs}
→ ValidDepsᵈ pp deps certs
→ ValidDepsᵈ pp deps (L.ccreghot c v ∷ certs)
reg : ∀ {c d certs}
→ ValidDepsᵈ pp (C.updateCertDeposit pp (L.reg c d) deps) certs
→ ValidDepsᵈ pp deps (L.reg c d ∷ certs)
data ValidDepsᵍ (pp : PParams) (deps : L.Deposits) : List L.DCert → Set where
[] : ValidDepsᵍ pp deps []
regdrep : ∀ {c v a certs}
→ ValidDepsᵍ pp (C.updateCertDeposit pp (L.regdrep c v a) deps) certs
→ ValidDepsᵍ pp deps (L.regdrep c v a ∷ certs)
deregdrep : ∀ {c d certs}
→ (L.DRepDeposit c , d) ∈ deps
→ ValidDepsᵍ pp (C.updateCertDeposit pp (L.deregdrep c d) deps) certs
→ ValidDepsᵍ pp deps (L.deregdrep c d ∷ certs)
delegate : ∀ {c del kh v certs}
→ ValidDepsᵍ pp deps certs
→ ValidDepsᵍ pp deps (L.delegate c del kh v ∷ certs)
dereg : ∀ {c d certs}
→ ValidDepsᵍ pp deps certs
→ ValidDepsᵍ pp deps (L.dereg c d ∷ certs)
regpool : ∀ {kh p certs}
→ ValidDepsᵍ pp deps certs
→ ValidDepsᵍ pp deps (L.regpool kh p ∷ certs)
retirepool : ∀ {kh e certs}
→ ValidDepsᵍ pp deps certs
→ ValidDepsᵍ pp deps (L.retirepool kh e ∷ certs)
ccreghot : ∀ {c v certs}
→ ValidDepsᵍ pp deps certs
→ ValidDepsᵍ pp deps (L.ccreghot c v ∷ certs)
reg : ∀ {c d certs}
→ ValidDepsᵍ pp deps certs
→ ValidDepsᵍ pp deps (L.reg c d ∷ certs)
record CertDeps* (pp : PParams) (dcerts : List L.DCert) : Set where
constructor ⟦_,_,_,_⟧*
field
depsᵈ : L.Deposits
depsᵍ : L.Deposits
validᵈ : ValidDepsᵈ pp depsᵈ dcerts
validᵍ : ValidDepsᵍ pp depsᵍ dcerts
pattern delegate* ddeps gdeps = ⟦ _ , _ , delegate ddeps , delegate gdeps ⟧*
pattern dereg* v w ddeps gdeps = ⟦ _ , _ , dereg v w ddeps , dereg gdeps ⟧*
pattern regpool* ddeps gdeps = ⟦ _ , _ , regpool ddeps , regpool gdeps ⟧*
pattern retirepool* ddeps gdeps = ⟦ _ , _ , retirepool ddeps , retirepool gdeps ⟧*
pattern regdrep* ddeps gdeps = ⟦ _ , _ , regdrep ddeps , regdrep gdeps ⟧*
pattern deregdrep* v ddeps gdeps = ⟦ _ , _ , deregdrep ddeps , deregdrep v gdeps ⟧*
pattern ccreghot* ddeps gdeps = ⟦ _ , _ , ccreghot ddeps , ccreghot gdeps ⟧*
pattern reg* ddeps gdeps = ⟦ _ , _ , reg ddeps , reg gdeps ⟧*
open CertDeps*
getCertDeps* : ∀ {pp dcert} → CertDeps* pp dcert → L.Deposits × L.Deposits
getCertDeps* deps = deps .depsᵈ , deps .depsᵍ
updateCertDeps : ∀ {pp dcert dcerts} → CertDeps* pp (dcert ∷ dcerts) → CertDeps* pp dcerts
updateCertDeps (delegate* ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (dereg* _ _ ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (regpool* ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (retirepool* ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (regdrep* ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (deregdrep* _ ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (ccreghot* ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps (reg* ddeps gdeps) = ⟦ _ , _ , ddeps , gdeps ⟧*
updateCertDeps* : ∀ {pp} dcerts → CertDeps* pp dcerts → CertDeps* pp []
updateCertDeps* [] deps = deps
updateCertDeps* (dcert ∷ dcerts) deps = updateCertDeps* dcerts (updateCertDeps deps)
instance
CertStToConf : L.Deposits × L.Deposits ⊢ L.CertState ⭆ C.CertState
CertStToConf .convⁱ (ddeps , gdeps) certState =
let open L.CertState certState in
⟦ ddeps ⊢conv dState , pState , gdeps ⊢conv gState ⟧
CertStFromConf : C.CertState ⭆ L.CertState
CertStFromConf .convⁱ _ certState =
let open C.CertState certState in
⟦ conv dState , pState , conv gState ⟧
CERTBASEToConf : ∀ {Γ s s'}
→ L.Deposits × L.Deposits
⊢ Γ L.⊢ s ⇀⦇ _ ,CERTBASE⦈ s' ⭆ⁱ λ deposits _ →
Γ C.⊢ (deposits ⊢conv s) ⇀⦇ _ ,CERTBASE⦈ (deposits ⊢conv s')
CERTBASEToConf .convⁱ deposits (L.CERT-base h) = C.CERT-base h
DELEGToConf : ∀ {Γ s dcert dcerts s'}
(open L.DelegEnv Γ renaming (pparams to pp))
→ CertDeps* pp (dcert ∷ dcerts) ⊢
Γ L.⊢ s ⇀⦇ dcert ,DELEG⦈ s' ⭆ⁱ λ deposits _ →
Γ C.⊢ (deposits .depsᵈ ⊢conv s) ⇀⦇ dcert ,DELEG⦈ (updateCertDeps deposits .depsᵈ ⊢conv s')
DELEGToConf .convⁱ (delegate* _ _) (L.DELEG-delegate h) = C.DELEG-delegate h
DELEGToConf .convⁱ (dereg* v w _ _) (L.DELEG-dereg h) = C.DELEG-dereg (h , v , w)
DELEGToConf .convⁱ (reg* _ _) (L.DELEG-reg h) = C.DELEG-reg h
POOLToConf : ∀ {pp s dcert s'} → pp L.⊢ s ⇀⦇ dcert ,POOL⦈ s' ⭆ pp C.⊢ s ⇀⦇ dcert ,POOL⦈ s'
POOLToConf .convⁱ _ (L.POOL-regpool h) = C.POOL-regpool h
POOLToConf .convⁱ _ L.POOL-retirepool = C.POOL-retirepool
GOVCERTToConf : ∀ {Γ s dcert dcerts s'}
(open L.CertEnv Γ using (pp))
→ CertDeps* pp (dcert ∷ dcerts) ⊢
Γ L.⊢ s ⇀⦇ dcert ,GOVCERT⦈ s' ⭆ⁱ λ deposits _ →
Γ C.⊢ (deposits .depsᵍ ⊢conv s) ⇀⦇ dcert ,GOVCERT⦈ (updateCertDeps deposits .depsᵍ ⊢conv s')
GOVCERTToConf .convⁱ (regdrep* _ _) (L.GOVCERT-regdrep h) = C.GOVCERT-regdrep h
GOVCERTToConf .convⁱ (deregdrep* v _ _) (L.GOVCERT-deregdrep h) = C.GOVCERT-deregdrep (h , v)
GOVCERTToConf .convⁱ (ccreghot* _ _) (L.GOVCERT-ccreghot h) = C.GOVCERT-ccreghot h
CERTToConf : ∀ {Γ s dcert dcerts s'} (open L.CertEnv Γ using (pp))
→ CertDeps* pp (dcert ∷ dcerts) ⊢
Γ L.⊢ s ⇀⦇ dcert ,CERT⦈ s' ⭆ⁱ λ deposits _ →
Γ C.⊢ (getCertDeps* deposits ⊢conv s) ⇀⦇ dcert ,CERT⦈ (getCertDeps* (updateCertDeps deposits) ⊢conv s')
CERTToConf .convⁱ deposits@(delegate* _ _) (L.CERT-deleg deleg) = C.CERT-deleg (deposits ⊢conv deleg)
CERTToConf .convⁱ deposits@(dereg* _ _ _ _) (L.CERT-deleg deleg) = C.CERT-deleg (deposits ⊢conv deleg)
CERTToConf .convⁱ deposits@(regpool* _ _) (L.CERT-pool pool) = C.CERT-pool (conv pool)
CERTToConf .convⁱ deposits@(retirepool* _ _) (L.CERT-pool pool) = C.CERT-pool (conv pool)
CERTToConf .convⁱ deposits@(regdrep* _ _) (L.CERT-vdel govcert) = C.CERT-vdel (deposits ⊢conv govcert)
CERTToConf .convⁱ deposits@(deregdrep* _ _ _) (L.CERT-vdel govcert) = C.CERT-vdel (deposits ⊢conv govcert)
CERTToConf .convⁱ deposits@(ccreghot* _ _) (L.CERT-vdel govcert) = C.CERT-vdel (deposits ⊢conv govcert)
CERTToConf .convⁱ deposits@(reg* _ _) (L.CERT-deleg deleg) = C.CERT-deleg (deposits ⊢conv deleg)
CERTS'ToConf : ∀ {Γ s dcerts s'} (let open L.CertEnv Γ)
→ CertDeps* pp dcerts
⊢ ReflexiveTransitiveClosure {sts = L._⊢_⇀⦇_,CERT⦈_} Γ s dcerts s' ⭆ⁱ λ deposits _ →
ReflexiveTransitiveClosure {sts = C._⊢_⇀⦇_,CERT⦈_}
Γ (getCertDeps* deposits ⊢conv s) dcerts
(getCertDeps* (updateCertDeps* dcerts deposits) ⊢conv s')
CERTS'ToConf .convⁱ deposits (BS-base Id-nop) = BS-base Id-nop
CERTS'ToConf .convⁱ deposits (BS-ind r rs) = BS-ind (deposits ⊢conv r) (updateCertDeps deposits ⊢conv rs)
CERTSToConf : ∀ {Γ s dcerts s'} (let open L.CertEnv Γ)
→ CertDeps* pp dcerts
⊢ Γ L.⊢ s ⇀⦇ dcerts ,CERTS⦈ s' ⭆ⁱ λ deposits _ →
Γ C.⊢ (getCertDeps* deposits ⊢conv s) ⇀⦇ dcerts ,CERTS⦈
(getCertDeps* (updateCertDeps* dcerts deposits) ⊢conv s')
CERTSToConf .convⁱ deposits (RTC (base , step)) =
RTC (getCertDeps* deposits ⊢conv base , deposits ⊢conv step)
instance
DELEGFromConf : ∀ {Γ s dcert s'}
→ Γ C.⊢ s ⇀⦇ dcert ,DELEG⦈ s' ⭆
Γ L.⊢ conv s ⇀⦇ dcert ,DELEG⦈ conv s'
DELEGFromConf .convⁱ _ (C.DELEG-delegate h) = L.DELEG-delegate h
DELEGFromConf .convⁱ _ (C.DELEG-dereg (h , _)) = L.DELEG-dereg h
DELEGFromConf .convⁱ _ (C.DELEG-reg h) = L.DELEG-reg h
POOLFromConf : ∀ {pp s dcert s'} → pp C.⊢ s ⇀⦇ dcert ,POOL⦈ s' ⭆ pp L.⊢ s ⇀⦇ dcert ,POOL⦈ s'
POOLFromConf .convⁱ _ (C.POOL-regpool h) = L.POOL-regpool h
POOLFromConf .convⁱ _ C.POOL-retirepool = L.POOL-retirepool
GOVCERTFromConf : ∀ {Γ s dcert s'}
→ Γ C.⊢ s ⇀⦇ dcert ,GOVCERT⦈ s' ⭆
Γ L.⊢ conv s ⇀⦇ dcert ,GOVCERT⦈ conv s'
GOVCERTFromConf .convⁱ _ (C.GOVCERT-regdrep h) = C.GOVCERT-regdrep h
GOVCERTFromConf .convⁱ _ (C.GOVCERT-deregdrep (h , _)) = C.GOVCERT-deregdrep h
GOVCERTFromConf .convⁱ _ (C.GOVCERT-ccreghot h) = C.GOVCERT-ccreghot h
CERTFromConf : ∀ {Γ s dcert s'} → Γ C.⊢ s ⇀⦇ dcert ,CERT⦈ s' ⭆ Γ L.⊢ conv s ⇀⦇ dcert ,CERT⦈ conv s'
CERTFromConf .convⁱ _ (C.CERT-deleg deleg) = L.CERT-deleg (conv deleg)
CERTFromConf .convⁱ _ (C.CERT-pool pool) = L.CERT-pool (conv pool)
CERTFromConf .convⁱ _ (C.CERT-vdel govcert) = L.CERT-vdel (conv govcert)
CERTBASEFromConf : ∀ {Γ s s'}
→ Γ C.⊢ s ⇀⦇ _ ,CERTBASE⦈ s' ⭆
Γ L.⊢ (conv s) ⇀⦇ _ ,CERTBASE⦈ (conv s')
CERTBASEFromConf .convⁱ _ (C.CERT-base h) = L.CERT-base h
CERTS'FromConf : ∀ {Γ s dcerts s'}
→ ReflexiveTransitiveClosure {sts = C._⊢_⇀⦇_,CERT⦈_} Γ s dcerts s' ⭆
ReflexiveTransitiveClosure {sts = L._⊢_⇀⦇_,CERT⦈_} Γ (conv s) dcerts (conv s')
CERTS'FromConf .convⁱ _ (BS-base Id-nop) = BS-base Id-nop
CERTS'FromConf .convⁱ _ (BS-ind r rs) = BS-ind (conv r) (conv rs)
CERTSFromConf : ∀ {Γ s dcerts s'}
→ Γ C.⊢ s ⇀⦇ dcerts ,CERTS⦈ s' ⭆
Γ L.⊢ conv s ⇀⦇ dcerts ,CERTS⦈ conv s'
CERTSFromConf .convⁱ _ (RTC (base , step)) = RTC (conv base , conv step)