module Foreign.Convertible where
open import Ledger.Prelude
open import Foreign.HaskellTypes
record Convertible (A B : Type) : Type where
field to : A → B
from : B → A
open Convertible ⦃...⦄ public
HsConvertible : (A : Set) → ⦃ HasHsType A ⦄ → Set
HsConvertible A = Convertible A (HsType A)
Convertible-Refl : ∀ {A} → Convertible A A
Convertible-Refl = λ where .to → id; .from → id
Convertible₁ : (Type → Type) → (Type → Type) → Type₁
Convertible₁ T U = ∀ {A B} → ⦃ Convertible A B ⦄ → Convertible (T A) (U B)
Convertible₂ : (Type → Type → Type) → (Type → Type → Type) → Type₁
Convertible₂ T U = ∀ {A B} → ⦃ Convertible A B ⦄ → Convertible₁ (T A) (U B)
Functor⇒Convertible : ∀ {F : Type↑} → ⦃ Functor F ⦄ → Convertible₁ F F
Functor⇒Convertible = λ where
.to → map to
.from → map from
Bifunctor⇒Convertible : ∀ {F} → ⦃ Bifunctor F ⦄ → Convertible₂ F F
Bifunctor⇒Convertible = λ where
.to → bimap to to
.from → bimap from from
_⨾_ : ∀ {A B C} → Convertible A B → Convertible B C → Convertible A C
(c ⨾ c') .to = c' .to ∘ c .to
(c ⨾ c') .from = c .from ∘ c' .from
open import Foreign.Haskell
open import Foreign.Haskell.Coerce using (coerce)
instance
Convertible-Maybe : Convertible₁ Maybe Maybe
Convertible-Maybe = Functor⇒Convertible
Convertible-× : Convertible₂ _×_ _×_
Convertible-× = Bifunctor⇒Convertible
Convertible-Pair : Convertible₂ _×_ Pair
Convertible-Pair = λ where
.to → coerce ∘ bimap to to
.from → bimap from from ∘ coerce
Convertible-⊎ : Convertible₂ _⊎_ _⊎_
Convertible-⊎ = Bifunctor⇒Convertible
Convertible-Either : Convertible₂ _⊎_ Either
Convertible-Either = λ where
.to → coerce ∘ bimap to to
.from → bimap from from ∘ coerce
Convertible-FinSet : Convertible₁ ℙ_ List
Convertible-FinSet = λ where
.to → map to ∘ setToList
.from → fromList ∘ map from
Convertible-Map : ∀ {K K' V V'} → ⦃ DecEq K ⦄
→ ⦃ Convertible K K' ⦄ → ⦃ Convertible V V' ⦄
→ Convertible (K ⇀ V) (List $ Pair K' V')
Convertible-Map = λ where
.to → to ∘ proj₁
.from → fromListᵐ ∘ map from
Convertible-List : Convertible₁ List List
Convertible-List = λ where
.to → map to
.from → map from
Convertible-Fun : ∀ {A A' B B'} → ⦃ Convertible A A' ⦄ → ⦃ Convertible B B' ⦄ → Convertible (A → B) (A' → B')
Convertible-Fun = λ where
.to → λ f → to ∘ f ∘ from
.from → λ f → from ∘ f ∘ to