Skip to content

Base

Properties Base

This section defines some types and functions used in other modules to prove properties of the ledger transition system.

{-# OPTIONS --safe #-}

open import Ledger.Conway.Specification.Abstract
open import Ledger.Conway.Specification.Transaction
import Ledger.Conway.Specification.Certs

module Ledger.Conway.Specification.Ledger.Properties.Base
  (txs : _) (open TransactionStructure txs) (open Ledger.Conway.Specification.Certs govStructure)
  (abs : AbstractFunctions txs) (open AbstractFunctions abs)
  where

open import Ledger.Prelude
open import Ledger.Conway.Specification.Gov txs
open import Ledger.Conway.Specification.Ledger txs abs
open import Ledger.Conway.Specification.Utxo txs abs
open import Ledger.Conway.Specification.Utxow txs abs

open import Data.List.Properties using (++-identityʳ; map-++)

open import Axiom.Set.Properties th

open import Data.Nat.Properties using (+-0-monoid; +-identityʳ; +-suc)
open import Relation.Binary using (IsEquivalence)
import Relation.Binary.Reasoning.Setoid as SetoidReasoning

Mapping a list of GovActionID × GovActionStates to a list of DepositPurposes is so common, we give it a name (dpMap); it's equivalent to map (λ (id , _) → GovActionDeposit id).

dpMap : GovState  List DepositPurpose
dpMap = map (GovActionDeposit  proj₁)

Given a ledger state s, consider the deposits in the UTxOState of s that are GovActionDeposits. We compare that set of deposits with the GovActionDeposits of the GovState of s. When these two sets are the same, we write govDepsMatch s and say the govDepsMatch relation holds for s. Formally, the govDepsMatch predicate is defined as follows:

isGADeposit : DepositPurpose  Type
isGADeposit dp = isGADepositᵇ dp  true
  where
  isGADepositᵇ : DepositPurpose  Bool
  isGADepositᵇ (GovActionDeposit _) = true
  isGADepositᵇ _                    = false

govDepsMatch : LState  Type
govDepsMatch ls =
  filterˢ isGADeposit (dom (DepositsOf ls)) ≡ᵉ fromList (dpMap (GovStateOf ls))

In the remainder of this section, we show some utility lemmas without proofs. (To reveal the proofs, click the "Show more Agda" button at the top of the page.)

module ≡ᵉ = IsEquivalence (≡ᵉ-isEquivalence {DepositPurpose})
pattern UTXOW-UTXOS x = UTXOW⇒UTXO (UTXO-inductive⋯ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ x)

open Equivalence
filterGA :  txId n  filterˢ isGADeposit  GovActionDeposit (txId , n)  ≡ᵉ  GovActionDeposit (txId , n) 
proj₁ (filterGA txId n) {a} x = (proj₂ (from ∈-filter x)) where open Equivalence
proj₂ (filterGA txId n) {a} x = to ∈-filter (ξ (from ∈-singleton x) , x)
  where
  ξ : a  GovActionDeposit (txId , n)  isGADeposit a
  ξ refl = refl

module LEDGER-PROPS (tx : Tx) (Γ : LEnv) (s : LState) where
  open Tx tx renaming (body to txb); open TxBody txb
  open LEnv Γ renaming (pparams to pp)
  open PParams pp using (govActionDeposit; govActionLifetime)
  open LState s
  open CertState certState
  open DState dState

  -- initial utxo deposits
  utxoDeps : Deposits
  utxoDeps = DepositsOf s

  -- GovState definitions and lemmas --
  mkAction : GovProposal    GovActionID × GovActionState
  mkAction p n = let open GovProposal p in
    mkGovStatePair
      (govActionLifetime +ᵉ epoch slot)
      (txId , n) returnAddr action prevAction

  -- update GovState with a proposal
  propUpdate : GovState  GovProposal    GovState
  propUpdate s p n = insertGovAction s (mkAction p n)

  -- update GovState with a vote
  voteUpdate : GovState  GovVote  GovState
  voteUpdate s v = addVote s gid voter vote
    where open GovVote v

  -- update GovState with a list of votes and proposals
  updateGovStates : List (GovVote  GovProposal)    GovState  GovState
  updateGovStates [] _ s = s
  updateGovStates (inj₁ v  vps) k s = updateGovStates vps (suc k) (voteUpdate s v)
  updateGovStates (inj₂ p  vps) k s = updateGovStates vps (suc k) (propUpdate s p k)

  -- updateGovStates faithfully represents a step of the LEDGER sts
  STS→GovSt≡ :  {s' : LState}  Γ  s ⇀⦇ tx ,LEDGER⦈ s'
                isValid  true  GovStateOf s'  updateGovStates (txgov txb) 0 (rmOrphanDRepVotes (CertStateOf s') (GovStateOf s))
  STS→GovSt≡ (LEDGER-V x) refl = STS→updateGovSt≡ (txgov txb) 0 (proj₂ (proj₂ (proj₂ x)))
    where
    STS→updateGovSt≡ : (vps : List (GovVote  GovProposal)) (k : ) {certSt : CertState} {govSt govSt' : GovState}
       (_⊢_⇀⟦_⟧ᵢ*'_ {_⊢_⇀⟦_⟧ᵇ_ = IdSTS}{_⊢_⇀⦇_,GOV⦈_} ($\begin{pmatrix} \,\href{Ledger.Conway.Specification.Transaction.html#4766}{\htmlId{4849}{\htmlClass{Function}{\text{txId}}}}\, \\ \,\href{Ledger.Core.Specification.Epoch.html#954}{\htmlId{4856}{\htmlClass{Function}{\text{epoch}}}}\, \,\href{Ledger.Conway.Specification.Ledger.html#1055}{\htmlId{4862}{\htmlClass{Function}{\text{slot}}}}\, \\ \,\href{Ledger.Conway.Specification.Ledger.Properties.Base.html#3239}{\htmlId{4869}{\htmlClass{Function}{\text{pp}}}}\, \\ \,\href{Ledger.Conway.Specification.Ledger.html#1078}{\htmlId{4874}{\htmlClass{Function}{\text{ppolicy}}}}\, \\ \,\href{Ledger.Conway.Specification.Ledger.html#1139}{\htmlId{4884}{\htmlClass{Function}{\text{enactState}}}}\, \\ \,\href{Ledger.Conway.Specification.Ledger.Properties.Base.html#4745}{\htmlId{4897}{\htmlClass{Bound}{\text{certSt}}}}\, \\ \,\href{Class.IsSet.html#916}{\htmlId{4906}{\htmlClass{Function}{\text{dom}}}}\, \,\href{Ledger.Conway.Specification.Certs.html#4341}{\htmlId{4910}{\htmlClass{Function}{\text{rewards}}}}\, \end{pmatrix}$ , k) govSt vps govSt')
       govSt'  updateGovStates vps k govSt
    STS→updateGovSt≡ [] _ (BS-base Id-nop) = refl
    STS→updateGovSt≡ (inj₁ v  vps) k (BS-ind (GOV-Vote x) h)
      = STS→updateGovSt≡ vps (suc k) h
    STS→updateGovSt≡ (inj₂ p  vps) k (BS-ind (GOV-Propose x) h) = STS→updateGovSt≡ vps (suc k) h

  opaque
    unfolding addVote

    dpMap-rmOrphanDRepVotes :  certState govSt  dpMap (rmOrphanDRepVotes certState govSt)  dpMap govSt
    dpMap-rmOrphanDRepVotes certState govSt = sym (fmap-∘ govSt) -- map proj₁ ∘ map (map₂ _) ≡ map (proj₁ ∘ map₂ _) ≡ map proj₁


module SetoidProperties (tx : Tx) (Γ : LEnv) (s : LState) where
  open Tx tx renaming (body to txb); open TxBody txb
  open LEnv Γ renaming (pparams to pp)
  open LEDGER-PROPS tx Γ s
  open SetoidReasoning (≡ᵉ-Setoid{DepositPurpose})

  CredDepIsNotGADep :  {a c}  a  CredentialDeposit c  ¬ isGADeposit a
  CredDepIsNotGADep refl ()

  PoolDepIsNotGADep :  {a c}  a  PoolDeposit c  ¬ isGADeposit a
  PoolDepIsNotGADep refl ()

  DRepDepIsNotGADep :  {a c}  a  DRepDeposit c  ¬ isGADeposit a
  DRepDepIsNotGADep refl ()
  filterCR : (c : DCert) (deps : Deposits)
              filterˢ isGADeposit (dom ( deps  certRefund c  ˢ )) ≡ᵉ filterˢ isGADeposit (dom (deps ˢ))
  filterCR (dereg c _) deps = ≡ᵉ.sym $ begin
    filterˢ isGADeposit (dom (deps ˢ)) ≈˘⟨ filter-cong $ dom-cong (res-ex-∪ Dec-∈-singleton) 
    filterˢ isGADeposit (dom ((deps  cr)ˢ  (deps  cr )ˢ)) ≈⟨ filter-cong dom∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ)  dom ((deps  cr ) ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ))  filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-cong filter0 ≡ᵉ.refl 
      filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-identityˡ $ filterˢ isGADeposit (dom ((deps  cr ) ˢ )) 
    filterˢ isGADeposit (dom ((deps  cr ) ˢ)) 
    where
    cr =  CredentialDeposit c 
    filter0 = filter-∅  _  CredDepIsNotGADep  (from ∈-singleton)  res-dom)
  filterCR (deregdrep c _) deps = ≡ᵉ.sym $ begin
    filterˢ isGADeposit (dom (deps ˢ)) ≈˘⟨ filter-cong $ dom-cong (res-ex-∪ Dec-∈-singleton) 
    filterˢ isGADeposit (dom ((deps  cr)ˢ  (deps  cr )ˢ)) ≈⟨ filter-cong dom∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ)  dom ((deps  cr ) ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom ((deps  cr) ˢ))  filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-cong filter0 ≡ᵉ.refl 
      filterˢ isGADeposit (dom ((deps  cr ) ˢ )) ≈⟨ ∪-identityˡ $ filterˢ isGADeposit (dom ((deps  cr ) ˢ )) 
    filterˢ isGADeposit (dom ((deps  cr ) ˢ)) 
    where
    cr =  DRepDeposit c 
    filter0 = filter-∅  _  DRepDepIsNotGADep  (from ∈-singleton)  res-dom)
  filterCR (delegate _ _ _ _)  deps = filter-cong (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (regpool _ _)       deps = filter-cong (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (regdrep _ _ _)     deps = filter-cong (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (retirepool _ _)    deps = filter-cong (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (ccreghot _ _)      deps = filter-cong (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCR (reg _ _)           deps = filter-cong (dom-cong (resᵐ-∅ᶜ {M = deps}))
  filterCD : (c : DCert) (deps : Deposits)  filterˢ isGADeposit (dom (certDeposit c pp ˢ)) ≡ᵉ 
  filterCD (delegate _ _ _ _)  deps = filter-∅ λ _  CredDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (reg _ _)           deps = filter-∅ λ _  CredDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (regpool _ _)       deps = filter-∅ λ _  PoolDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (regdrep _ _ _)     deps = filter-∅ λ _  DRepDepIsNotGADep  from ∈-singleton  dom-single→single
  filterCD (dereg _ _)         deps = ≡ᵉ.trans (filter-cong dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  filterCD (retirepool _ _)    deps = ≡ᵉ.trans (filter-cong dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  filterCD (deregdrep _ _)     deps = ≡ᵉ.trans (filter-cong dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  filterCD (ccreghot _ _)      deps = ≡ᵉ.trans (filter-cong dom∅) $ filter-∅ λ _ a∈ _  ∉-∅ a∈
  noGACerts : (cs : List DCert) (deps : Deposits)
     filterˢ isGADeposit (dom (updateCertDeposits pp cs deps)) ≡ᵉ filterˢ isGADeposit (dom deps)
  noGACerts [] _ = filter-cong ≡ᵉ.refl
  noGACerts (dcert@(delegate _ _ _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ cd))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-cong dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl $ filterCD dcert deps 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(reg _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ cd))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-cong dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl $ filterCD dcert deps 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(regpool _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪ˡ cd))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪ˡ cd)) ≈⟨ filter-cong (dom∪ˡ≡∪dom {m = deps} {m' = cd}) 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl filter0 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(regdrep _ _ _)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps ∪⁺ certDeposit dcert pp))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps ∪⁺ cd)) ≈⟨ filter-cong dom∪⁺≡∪dom 
    filterˢ isGADeposit (dom deps  dom (cd ˢ )) ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom deps)  filterˢ isGADeposit (dom (cd ˢ)) ≈⟨ ∪-cong ≡ᵉ.refl filter0 
    filterˢ isGADeposit (dom deps)   ≈⟨ ∪-identityʳ $ filterˢ isGADeposit (dom deps) 
    filterˢ isGADeposit (dom deps) 
    where
      cd = certDeposit dcert pp
      filter0 = filterCD dcert deps
  noGACerts (dcert@(dereg c v)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps  certRefund (dereg c v)))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps  certRefund (dereg c v))) ≈⟨ filterCR dcert deps 
    filterˢ isGADeposit (dom deps) 
  noGACerts (dcert@(deregdrep c v)  cs) deps = begin
    filterˢ isGADeposit (dom (updateCertDeposits pp cs (deps  certRefund (deregdrep c v)))) ≈⟨ noGACerts cs _ 
    filterˢ isGADeposit (dom (deps  certRefund (deregdrep c v))) ≈⟨ filterCR dcert deps 
    filterˢ isGADeposit (dom deps) 
  noGACerts (retirepool _ _  cs) deps = noGACerts cs deps
  noGACerts (ccreghot _ _  cs) deps = noGACerts cs deps

  opaque
    unfolding addVote
    dpMap∘voteUpdate≡dpMap : (v : GovVote) {govSt : GovState}  dpMap (voteUpdate govSt v)  dpMap govSt
    dpMap∘voteUpdate≡dpMap v {[]} = refl
    dpMap∘voteUpdate≡dpMap v {(aid , ast)  govSt} =
      cong  x  (GovActionDeposit  proj₁) (aid , ast)  x) (dpMap∘voteUpdate≡dpMap v)

  props-dpMap-votes-invar : (vs : List GovVote) (ps : List GovProposal) {k : } {govSt : GovState}
     fromList (dpMap (updateGovStates (map inj₂ ps ++ map inj₁ vs) k govSt ))
      ≡ᵉ fromList (dpMap (updateGovStates (map inj₂ ps) k govSt))
  props-dpMap-votes-invar [] ps {k} {govSt} = ≡ᵉ.reflexive
    (cong  x  fromList (dpMap (updateGovStates x k govSt))) (++-identityʳ (map inj₂ ps)))
  props-dpMap-votes-invar (v  vs) [] {k} {govSt} = begin
    fromList (dpMap (updateGovStates (map inj₁ (v  vs)) k govSt))
      ≈⟨ props-dpMap-votes-invar vs [] 
    fromList (dpMap (updateGovStates (map inj₂ []) (suc k) (voteUpdate govSt v)))
      ≡⟨ cong fromList (dpMap∘voteUpdate≡dpMap v) 
    fromList (dpMap govSt)
      
  props-dpMap-votes-invar (v  vs) (p  ps) {k} {govSt} = props-dpMap-votes-invar (v  vs) ps
  dpMap-update-∪ :  gSt p k
     fromList (dpMap gSt)   GovActionDeposit (txId , k)  ≡ᵉ fromList (dpMap (propUpdate gSt p k))
  dpMap-update-∪ [] p k = ∪-identityˡ (fromList (dpMap [ mkAction p k ]))
  dpMap-update-∪ (g@(gaID₀ , gaSt₀)  gSt) p k
    with (govActionPriority (GovActionTypeOf gaSt₀))
         ≤? (govActionPriority (GovActionTypeOf (proj₂ (mkAction p k))))
  ... | yes _  = begin
      fromList (dpMap (g  gSt))   GovActionDeposit (txId , k) 
        ≈⟨ ∪-cong fromList-∪-singleton ≡ᵉ.refl 
      ( GovActionDeposit gaID₀   fromList (dpMap gSt))   GovActionDeposit (txId , k) 
        ≈⟨ ∪-assoc  GovActionDeposit gaID₀  (fromList (dpMap gSt))  GovActionDeposit (txId , k)  
       GovActionDeposit gaID₀   (fromList (dpMap gSt)   GovActionDeposit (txId , k) )
        ≈⟨ ∪-cong ≡ᵉ.refl (dpMap-update-∪ gSt p k) 
       GovActionDeposit gaID₀   fromList (dpMap (propUpdate gSt p k))
        ≈˘⟨ fromList-∪-singleton 
      fromList (dpMap (g  insertGovAction gSt (mkAction p k)))
        
  ... | no _   = begin
      fromList (dpMap (g  gSt))   GovActionDeposit (txId , k) 
        ≈⟨ ∪-comm (fromList (dpMap (g  gSt)))  GovActionDeposit (txId , k)  
       GovActionDeposit (txId , k)   fromList (dpMap (g  gSt))
        ≈˘⟨ fromList-∪-singleton 
      fromList (dpMap ((mkAction p k)  g  gSt))
        
  connex-lemma :  gSt p ps {k}
     fromList (dpMap (updateGovStates (map inj₂ ps) k gSt))   GovActionDeposit (txId , k + length ps) 
        ≡ᵉ fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate gSt p k)))
  connex-lemma gSt p [] {k} = begin
      fromList (dpMap gSt)   GovActionDeposit (txId , k + 0) 
        ≡⟨ cong  x  fromList (dpMap gSt)   GovActionDeposit (txId , x) ) (+-identityʳ k) 
      fromList (dpMap gSt)   GovActionDeposit (txId , k) 
        ≈⟨ dpMap-update-∪ gSt p k 
      fromList (dpMap (propUpdate gSt p k))
        
  connex-lemma gSt p (p'  ps) {k} = begin
    fromList (dpMap (updateGovStates (map inj₂ (p'  ps)) k gSt))
        GovActionDeposit (txId , k + length (p'  ps)) 
        ≡⟨ cong  x  fromList (dpMap (updateGovStates (map inj₂ (p'  ps)) k gSt))
              GovActionDeposit (txId , x) ) (+-suc k (length ps)) 
    fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate gSt p' k)))
        GovActionDeposit (txId , (suc k) + length ps) 
        ≈˘⟨ ∪-cong (connex-lemma gSt p' ps) ≡ᵉ.refl 
    (fromList (dpMap (updateGovStates (map inj₂ ps) k gSt))
        GovActionDeposit (txId , k + length ps) )
        GovActionDeposit (txId , (suc k) + length ps) 
        ≈⟨ ∪-cong (connex-lemma gSt p ps) ≡ᵉ.refl 
    fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate gSt p k)))
        GovActionDeposit (txId , (suc k) + length ps) 
        ≈⟨ connex-lemma (propUpdate gSt p k) p' ps 
    fromList (dpMap (updateGovStates (map inj₂ (p'  ps)) (suc k) (propUpdate gSt p k)))
        
  utxo-govst-connex :  txp {utxoDs gSt gad}
     filterˢ isGADeposit (dom (utxoDs)) ≡ᵉ fromList (dpMap gSt)
     filterˢ isGADeposit (dom (updateProposalDeposits txp txId gad utxoDs))
      ≡ᵉ fromList (dpMap (updateGovStates (map inj₂ txp) 0 gSt))
  utxo-govst-connex [] x = x
  utxo-govst-connex (p  ps) {utxoDs} {gSt} {gad} x = begin
    filterˢ isGADeposit (dom (updateProposalDeposits (p  ps) txId gad utxoDs))
      ≈⟨ filter-cong dom∪⁺≡∪dom 
    filterˢ isGADeposit ((dom (updateProposalDeposits ps txId gad utxoDs))
       (dom{X = Deposits}  GovActionDeposit (txId , length ps) , gad ))
      ≈⟨ filter-hom-∪ 
    filterˢ isGADeposit (dom (updateProposalDeposits ps txId gad utxoDs))  filterˢ isGADeposit
        (dom{X = Deposits}  GovActionDeposit (txId , length ps) , gad )
      ≈⟨ ∪-cong (utxo-govst-connex ps x) (filter-cong dom-single≡single) 
    fromList (dpMap (updateGovStates (map inj₂ ps) 0 gSt))
       filterˢ isGADeposit  GovActionDeposit (txId , length ps) 
      ≈⟨ ∪-cong  ≡ᵉ.refl (filterGA txId _) 
    fromList (dpMap (updateGovStates (map inj₂ ps) 0 gSt))   GovActionDeposit (txId , length ps) 
      ≈⟨ connex-lemma gSt p ps 
    fromList (dpMap (updateGovStates (map inj₂ (p  ps)) 0 gSt)) 

  -- The list of natural numbers from 0 up to `n` - 1.
  ⟦0:<_⟧ :   List 
  ⟦0:< 0      = []
  ⟦0:< suc n  = ⟦0:< n  ++ [ n ]
  connex-lemma-rep :  k govSt ps 
    fromList (dpMap (updateGovStates (map inj₂ ps) k govSt))
    ≡ᵉ fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps )
  connex-lemma-rep k govSt [] = begin
    fromList (dpMap govSt)
      ≈˘⟨ ∪-identityʳ (fromList (dpMap govSt)) 
    fromList (dpMap govSt)  fromList []
      ≡⟨⟩
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< 0 ) 
  connex-lemma-rep k govSt (p  ps) = begin
    fromList (dpMap (updateGovStates (map inj₂ (p  ps)) k govSt))
      ≡⟨⟩
    fromList (dpMap (updateGovStates (inj₂ p  map inj₂ ps) k govSt))
      ≡⟨⟩
    fromList (dpMap (updateGovStates (map inj₂ ps) (suc k) (propUpdate govSt p k)))
      ≈˘⟨ connex-lemma govSt p ps {k} 
    fromList (dpMap (updateGovStates (map inj₂ ps) k govSt))   GovActionDeposit (txId , k + length ps) 
      ≈⟨ ∪-cong (connex-lemma-rep k govSt ps) ≡ᵉ.refl 
    (fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps ))   GovActionDeposit (txId , k + length ps) 
      ≈⟨ ∪-assoc (fromList (dpMap govSt)) (fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps ))  GovActionDeposit (txId , k + length ps)  
    fromList (dpMap govSt)  (fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps )   GovActionDeposit (txId , k + length ps) )
      ≡⟨⟩
    fromList (dpMap govSt)  (fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps )  fromList [ GovActionDeposit (txId , k + length ps) ])
      ≈⟨ ∪-cong ≡ᵉ.refl (∪-fromList-++ (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps ) [ GovActionDeposit (txId , k + length ps) ]) 
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length ps  ++ [ GovActionDeposit (txId , k + length ps) ])
      ≡˘⟨ cong  x  fromList (dpMap govSt)  fromList x) (map-++ _ ⟦0:< length ps  [ length ps ]) 
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) (⟦0:< length ps  ++ [ length ps ]))
      ≡⟨⟩
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length (p  ps) ) 
  -- Removing orphan DRep votes does not modify the set of GAs in GovState
  |ᵒ-GAs-pres :  k govSt certState 
    fromList (dpMap (updateGovStates (txgov txb) k (rmOrphanDRepVotes certState govSt)))
    ≡ᵉ fromList (dpMap (updateGovStates (txgov txb) k govSt))
  |ᵒ-GAs-pres k govSt certState = begin
    fromList (dpMap (updateGovStates (txgov txb) k (rmOrphanDRepVotes certState govSt)))
      ≈⟨ props-dpMap-votes-invar txGovVotes txGovProposals {k} {rmOrphanDRepVotes certState govSt} 
    fromList (dpMap (updateGovStates (map inj₂ txGovProposals) k (rmOrphanDRepVotes certState govSt)))
      ≈⟨ connex-lemma-rep k (rmOrphanDRepVotes certState govSt) txGovProposals 
    fromList (dpMap (rmOrphanDRepVotes certState govSt))  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length txGovProposals )
      ≡⟨ cong  x  fromList x  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length txGovProposals )) (dpMap-rmOrphanDRepVotes certState govSt) 
    fromList (dpMap govSt)  fromList (map  i  GovActionDeposit (txId , k + i)) ⟦0:< length txGovProposals )
      ≈˘⟨ connex-lemma-rep k govSt txGovProposals 
    fromList (dpMap (updateGovStates (map inj₂ txGovProposals) k govSt))
      ≈˘⟨ props-dpMap-votes-invar txGovVotes txGovProposals {k} {govSt} 
    fromList (dpMap (updateGovStates (txgov txb) k govSt))