module MCG (
MCG,
make,
period,
next,
reject,
) where
import Data.Bits (countLeadingZeros, unsafeShiftR)
import Data.List (nub)
import Data.Numbers.Primes (isPrime, primeFactors)
import Data.Word (Word64)
data MCG = MCG { MCG -> Word64
m :: !Word64, MCG -> Word64
a :: !Word64, MCG -> Word64
x :: !Word64 }
deriving stock Int -> MCG -> ShowS
[MCG] -> ShowS
MCG -> String
(Int -> MCG -> ShowS)
-> (MCG -> String) -> ([MCG] -> ShowS) -> Show MCG
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> MCG -> ShowS
showsPrec :: Int -> MCG -> ShowS
$cshow :: MCG -> String
show :: MCG -> String
$cshowList :: [MCG] -> ShowS
showList :: [MCG] -> ShowS
Show
make ::
Word64
-> Word64
-> MCG
make :: Word64 -> Word64 -> MCG
make (Word64 -> Word64 -> Word64
forall a. Ord a => a -> a -> a
max Word64
4 -> Word64
period_) Word64
seed = Word64 -> Word64 -> Word64 -> MCG
MCG Word64
m Word64
a (Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
mod (Word64
seed Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
1) Word64
m)
where
m :: Word64
m = Word64 -> Word64
forall {t}. Integral t => t -> t
findM (if Word64 -> Bool
forall a. Integral a => a -> Bool
odd Word64
period_ then Word64
period_ Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
2 else Word64
period_ Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
1)
m' :: Word64
m' = Word64
m Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1
qs :: [Word64]
qs = [Word64] -> [Word64]
forall a. Eq a => [a] -> [a]
nub ([Word64] -> [Word64]) -> [Word64] -> [Word64]
forall a b. (a -> b) -> a -> b
$ Word64 -> [Word64]
forall int. Integral int => int -> [int]
primeFactors Word64
m'
a :: Word64
a = Word64 -> Word64
findA (Word64 -> Word64
guessA Word64
m)
findM :: t -> t
findM t
p = if t -> Bool
forall a. Integral a => a -> Bool
isPrime t
p then t
p else t -> t
findM (t
p t -> t -> t
forall a. Num a => a -> a -> a
+ t
2)
findA :: Word64 -> Word64
findA Word64
x
| (Word64 -> Bool) -> [Word64] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (\Word64
q -> Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
mod (Word64
x Word64 -> Word64 -> Word64
forall a b. (Num a, Integral b) => a -> b -> a
^ Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
div Word64
m' Word64
q) Word64
m Word64 -> Word64 -> Bool
forall a. Eq a => a -> a -> Bool
/= Word64
1) [Word64]
qs
= Word64
x
| Bool
otherwise
= Word64 -> Word64
findA (Word64
x Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
+ Word64
1)
period :: MCG -> Word64
period :: MCG -> Word64
period (MCG Word64
m Word64
_ Word64
_) = Word64
m Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1
next :: MCG -> (Word64, MCG)
next :: MCG -> (Word64, MCG)
next (MCG Word64
m Word64
a Word64
x) = (Word64
x Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
- Word64
1, Word64 -> Word64 -> Word64 -> MCG
MCG Word64
m Word64
a (Word64 -> Word64 -> Word64
forall a. Integral a => a -> a -> a
mod (Word64
x Word64 -> Word64 -> Word64
forall a. Num a => a -> a -> a
* Word64
a) Word64
m))
reject :: Word64 -> MCG -> (Word64, MCG)
reject :: Word64 -> MCG -> (Word64, MCG)
reject Word64
ub MCG
g = case MCG -> (Word64, MCG)
next MCG
g of
(Word64
x, MCG
g') -> if Word64
x Word64 -> Word64 -> Bool
forall a. Ord a => a -> a -> Bool
< Word64
ub then (Word64
x, MCG
g') else Word64 -> MCG -> (Word64, MCG)
reject Word64
ub MCG
g'
word64Log2m1 :: Word64 -> Int
word64Log2m1 :: Word64 -> Int
word64Log2m1 Word64
x = Int
64 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Word64 -> Int
forall b. FiniteBits b => b -> Int
countLeadingZeros Word64
x
guessA :: Word64 -> Word64
guessA :: Word64 -> Word64
guessA Word64
x = Word64 -> Int -> Word64
forall a. Bits a => a -> Int -> a
unsafeShiftR Word64
x (Int -> Int -> Int
forall a. Integral a => a -> a -> a
div (Word64 -> Int
word64Log2m1 Word64
x) Int
3)