{-# OPTIONS --safe --without-K #-}
module Prelude where
open import Agda.Primitive using (lzero) renaming (Set to Type) public
open import Level public
hiding (lower)
renaming (_⊔_ to _⊔ˡ_; suc to sucˡ; zero to zeroˡ)
open import Function public
open import Data.Bool public
hiding (_≟_; _≤_; _≤?_; _<_; _<?_; if_then_else_)
open import Data.Empty public
open import Data.List public
hiding (align; alignWith; filter; fromMaybe; map; zip; zipWith)
open import Data.List.Membership.Propositional public
using () renaming (_∈_ to _∈ˡ_; _∉_ to _∉ˡ_)
open import Data.Maybe public
hiding (_>>=_; align; alignWith; ap; fromMaybe; map; zip; zipWith)
open import Data.Unit public
using (⊤; tt)
open import Data.Unit.Polymorphic public
using ()
renaming (⊤ to ⊤↑; tt to tt↑)
instance Poly-tt = tt↑
open import Data.Sum public
hiding (assocʳ; assocˡ; map; map₁; map₂; reduce; swap)
open import Data.Product public
hiding (assocʳ; assocˡ; map; map₁; map₂; map₂′; swap; _<*>_)
open import Data.Nat public
hiding (_≟_; _≤_; _≤?_; _<_; _<?_; _≤ᵇ_; _≡ᵇ_; _≥_; _>_; less-than-or-equal)
renaming (_+_ to _+ℕ_)
open import Data.Integer as ℤ public
using (ℤ)
renaming (_+_ to _+ℤ_)
open import Data.String public
using (String; _<+>_)
open import Relation.Nullary public
open import Relation.Nullary.Negation public
open import Relation.Nullary.Decidable public
using (Dec; yes; no; dec-yes; dec-no; ⌊_⌋; ¬?; toWitness; fromWitness)
renaming (map′ to mapDec)
open import Relation.Unary public
using (Pred) renaming (Decidable to Decidable¹)
open import Relation.Binary public
using () renaming (Decidable to Decidable²)
open import Relation.Binary.PropositionalEquality public
hiding (preorder; isPreorder; setoid; [_])
open import Class.Core public
using (Type↑)
open import Class.Functor public
renaming (fmap to map)
open import Class.Bifunctor public
open import Class.Semigroup public
open import Class.Monoid public
open import Class.CommutativeMonoid public
open import Class.Applicative public
open import Class.Monad public
open import Class.DecEq public; instance DecEq-×′ = DecEq-×
open import Class.Decidable public
∃⁇ : ∀ {ℓ} → Set (sucˡ ℓ)
∃⁇ {ℓ} = Σ (Set ℓ) _⁇
open import Class.Show public
∃₂-syntax : ∀ {a b c} {A : Set a} {B : Set b}
(C : A → B → Set c) → Set _
∃₂-syntax C = ∃ λ a → ∃ λ b → C a b
infix 2 ∃₂-syntax
syntax ∃₂-syntax (λ x y → C) = ∃₂[ x , y ] C
import Data.Nat.Literals as ℕ
instance Number-ℕ = ℕ.number