{-# OPTIONS --cubical-compatible --safe #-}
open import Algebra.Bundles
open import Algebra.Solver.Ring.AlmostCommutativeRing
open import Relation.Binary.Definitions using (WeaklyDecidable)
module Algebra.Solver.Ring
{r₁ r₂ r₃ r₄}
(Coeff : RawRing r₁ r₄)
(R : AlmostCommutativeRing r₂ r₃)
(morphism : Coeff -Raw-AlmostCommutative⟶ R)
(_coeff≟_ : WeaklyDecidable (Induced-equivalence morphism))
where
open import Algebra.Core
open import Algebra.Solver.Ring.Lemmas Coeff R morphism
private module C = RawRing Coeff
open AlmostCommutativeRing R
renaming (zero to *-zero; zeroˡ to *-zeroˡ; zeroʳ to *-zeroʳ)
open import Algebra.Definitions _≈_
open import Algebra.Morphism
open _-Raw-AlmostCommutative⟶_ morphism renaming (⟦_⟧ to ⟦_⟧′)
open import Algebra.Properties.Semiring.Exp semiring
open import Relation.Nullary.Decidable using (yes; no)
open import Relation.Binary.Reasoning.Setoid setoid
import Relation.Binary.PropositionalEquality.Core as ≡
import Relation.Binary.Reflection as Reflection
open import Data.Nat.Base using (ℕ; suc; zero)
open import Data.Fin.Base using (Fin; zero; suc)
open import Data.Vec.Base using (Vec; []; _∷_; lookup)
open import Data.Maybe.Base using (just; nothing)
open import Function.Base using (_⟨_⟩_; _$_)
open import Level using (_⊔_)
infix 9 :-_ -H_ -N_
infixr 9 _:×_ _:^_ _^N_
infix 8 _*x+_ _*x+HN_ _*x+H_
infixl 8 _:*_ _*N_ _*H_ _*NH_ _*HN_
infixl 7 _:+_ _:-_ _+H_ _+N_
infix 4 _≈H_ _≈N_
private
variable
n : ℕ
data Op : Set where
[+] : Op
[*] : Op
data Polynomial (m : ℕ) : Set r₁ where
op : (o : Op) (p₁ : Polynomial m) (p₂ : Polynomial m) → Polynomial m
con : (c : C.Carrier) → Polynomial m
var : (x : Fin m) → Polynomial m
_:^_ : (p : Polynomial m) (n : ℕ) → Polynomial m
:-_ : (p : Polynomial m) → Polynomial m
_:+_ : Polynomial n → Polynomial n → Polynomial n
_:+_ = op [+]
_:*_ : Polynomial n → Polynomial n → Polynomial n
_:*_ = op [*]
_:-_ : Polynomial n → Polynomial n → Polynomial n
x :- y = x :+ :- y
_:×_ : ℕ → Polynomial n → Polynomial n
zero :× p = con C.0#
suc m :× p = p :+ m :× p
sem : Op → Op₂ Carrier
sem [+] = _+_
sem [*] = _*_
Env : ℕ → Set _
Env = Vec Carrier
⟦_⟧ : Polynomial n → Env n → Carrier
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#2554}{\htmlId{3306}{\htmlClass{InductiveConstructor}{\text{op}}}}\, \,\href{Algebra.Solver.Ring.html#3309}{\htmlId{3309}{\htmlClass{Bound}{\text{o}}}}\, \,\href{Algebra.Solver.Ring.html#3311}{\htmlId{3311}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#3314}{\htmlId{3314}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#3311}{\htmlId{3325}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ ⟨ sem o ⟩ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#3314}{\htmlId{3344}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#2627}{\htmlId{3353}{\htmlClass{InductiveConstructor}{\text{con}}}}\, \,\href{Algebra.Solver.Ring.html#3357}{\htmlId{3357}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#3357}{\htmlId{3372}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#2667}{\htmlId{3379}{\htmlClass{InductiveConstructor}{\text{var}}}}\, \,\href{Algebra.Solver.Ring.html#3383}{\htmlId{3383}{\htmlClass{Bound}{\text{x}}}}\, \end{pmatrix}$ ρ = lookup ρ x
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#3409}{\htmlId{3409}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#2703}{\htmlId{3411}{\htmlClass{InductiveConstructor Operator}{\text{:^}}}}\, \,\href{Algebra.Solver.Ring.html#3414}{\htmlId{3414}{\htmlClass{Bound}{\text{n}}}}\, \end{pmatrix}$ ρ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#3409}{\htmlId{3428}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ^ n
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#2754}{\htmlId{3440}{\htmlClass{InductiveConstructor Operator}{\text{:-}}}}\, \,\href{Algebra.Solver.Ring.html#3443}{\htmlId{3443}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ = - $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#3443}{\htmlId{3461}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ
mutual
data HNF : ℕ → Set r₁ where
∅ : HNF (suc n)
_*x+_ : HNF (suc n) → Normal n → HNF (suc n)
data Normal : ℕ → Set r₁ where
con : C.Carrier → Normal zero
poly : HNF (suc n) → Normal (suc n)
mutual
⟦_⟧H : HNF (suc n) → Env (suc n) → Carrier
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4284}{\htmlId{4714}{\htmlClass{InductiveConstructor}{\text{∅}}}}\, \end{pmatrix}$ _ = 0#
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4742}{\htmlId{4742}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#4308}{\htmlId{4744}{\htmlClass{InductiveConstructor Operator}{\text{*x+}}}}\, \,\href{Algebra.Solver.Ring.html#4748}{\htmlId{4748}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ (x ∷ ρ) = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4742}{\htmlId{4765}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4748}{\htmlId{4786}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ
⟦_⟧N : Normal n → Env n → Carrier
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4391}{\htmlId{4834}{\htmlClass{InductiveConstructor}{\text{con}}}}\, \,\href{Algebra.Solver.Ring.html#4838}{\htmlId{4838}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ _ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4838}{\htmlId{4850}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4426}{\htmlId{4859}{\htmlClass{InductiveConstructor}{\text{poly}}}}\, \,\href{Algebra.Solver.Ring.html#4864}{\htmlId{4864}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4864}{\htmlId{4875}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ
mutual
data _≈H_ : HNF n → HNF n → Set (r₁ ⊔ r₃) where
∅ : _≈H_ {suc n} ∅ ∅
_*x+_ : ∀ {n} {p₁ p₂ : HNF (suc n)} {c₁ c₂ : Normal n} →
p₁ ≈H p₂ → c₁ ≈N c₂ → (p₁ *x+ c₁) ≈H (p₂ *x+ c₂)
data _≈N_ : Normal n → Normal n → Set (r₁ ⊔ r₃) where
con : ∀ {c₁ c₂} → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#5282}{\htmlId{5293}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#5285}{\htmlId{5303}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ → con c₁ ≈N con c₂
poly : ∀ {n} {p₁ p₂ : HNF (suc n)} → p₁ ≈H p₂ → poly p₁ ≈N poly p₂
mutual
infix 4 _≟H_ _≟N_
_≟H_ : WeaklyDecidable (_≈H_ {n = n})
∅ ≟H ∅ = just ∅
∅ ≟H (_ *x+ _) = nothing
(_ *x+ _) ≟H ∅ = nothing
(p₁ *x+ c₁) ≟H (p₂ *x+ c₂) with p₁ ≟H p₂ | c₁ ≟N c₂
... | just p₁≈p₂ | just c₁≈c₂ = just (p₁≈p₂ *x+ c₁≈c₂)
... | _ | nothing = nothing
... | nothing | _ = nothing
_≟N_ : WeaklyDecidable (_≈N_ {n = n})
con c₁ ≟N con c₂ with c₁ coeff≟ c₂
... | just c₁≈c₂ = just (con c₁≈c₂)
... | nothing = nothing
poly p₁ ≟N poly p₂ with p₁ ≟H p₂
... | just p₁≈p₂ = just (poly p₁≈p₂)
... | nothing = nothing
mutual
⟦_⟧H-cong : {p₁ p₂ : HNF (suc n)} →
p₁ ≈H p₂ → ∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6154}{\htmlId{6210}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6157}{\htmlId{6222}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#5064}{\htmlId{6234}{\htmlClass{InductiveConstructor}{\text{∅}}}}\, \end{pmatrix}$ _ = refl
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6277}{\htmlId{6277}{\htmlClass{Bound}{\text{p₁≈p₂}}}}\, \,\href{Algebra.Solver.Ring.html#5093}{\htmlId{6283}{\htmlClass{InductiveConstructor Operator}{\text{*x+}}}}\, \,\href{Algebra.Solver.Ring.html#6287}{\htmlId{6287}{\htmlClass{Bound}{\text{c₁≈c₂}}}}\, \end{pmatrix}$ (x ∷ ρ) =
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6277}{\htmlId{6318}{\htmlClass{Bound}{\text{p₁≈p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) ⟨ *-cong ⟩ refl)
⟨ +-cong ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6287}{\htmlId{6380}{\htmlClass{Bound}{\text{c₁≈c₂}}}}\, \end{pmatrix}$ ρ
⟦_⟧N-cong : {p₁ p₂ : Normal n} →
p₁ ≈N p₂ → ∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6412}{\htmlId{6465}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6415}{\htmlId{6477}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#5272}{\htmlId{6489}{\htmlClass{InductiveConstructor}{\text{con}}}}\, \,\href{Algebra.Solver.Ring.html#6493}{\htmlId{6493}{\htmlClass{Bound}{\text{c₁≈c₂}}}}\, \end{pmatrix}$ _ = c₁≈c₂
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#5332}{\htmlId{6522}{\htmlClass{InductiveConstructor}{\text{poly}}}}\, \,\href{Algebra.Solver.Ring.html#6527}{\htmlId{6527}{\htmlClass{Bound}{\text{p₁≈p₂}}}}\, \end{pmatrix}$ ρ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6527}{\htmlId{6547}{\htmlClass{Bound}{\text{p₁≈p₂}}}}\, \end{pmatrix}$ ρ
0H : HNF (suc n)
0H = ∅
0N : Normal n
0N {zero} = con C.0#
0N {suc n} = poly 0H
mutual
1H : HNF (suc n)
1H {n} = ∅ *x+ 1N {n}
1N : Normal n
1N {zero} = con C.1#
1N {suc n} = poly 1H
_*x+HN_ : HNF (suc n) → Normal n → HNF (suc n)
(p *x+ c′) *x+HN c = (p *x+ c′) *x+ c
∅ *x+HN c with c ≟N 0N
... | just c≈0 = ∅
... | nothing = ∅ *x+ c
mutual
_+H_ : HNF (suc n) → HNF (suc n) → HNF (suc n)
∅ +H p = p
p +H ∅ = p
(p₁ *x+ c₁) +H (p₂ *x+ c₂) = (p₁ +H p₂) *x+HN (c₁ +N c₂)
_+N_ : Normal n → Normal n → Normal n
con c₁ +N con c₂ = con (c₁ C.+ c₂)
poly p₁ +N poly p₂ = poly (p₁ +H p₂)
_*x+H_ : HNF (suc n) → HNF (suc n) → HNF (suc n)
p₁ *x+H (p₂ *x+ c) = (p₁ +H p₂) *x+HN c
∅ *x+H ∅ = ∅
(p₁ *x+ c) *x+H ∅ = (p₁ *x+ c) *x+ 0N
mutual
_*NH_ : Normal n → HNF (suc n) → HNF (suc n)
c *NH ∅ = ∅
c *NH (p *x+ c′) with c ≟N 0N
... | just c≈0 = ∅
... | nothing = (c *NH p) *x+ (c *N c′)
_*HN_ : HNF (suc n) → Normal n → HNF (suc n)
∅ *HN c = ∅
(p *x+ c′) *HN c with c ≟N 0N
... | just c≈0 = ∅
... | nothing = (p *HN c) *x+ (c′ *N c)
_*H_ : HNF (suc n) → HNF (suc n) → HNF (suc n)
∅ *H _ = ∅
(_ *x+ _) *H ∅ = ∅
(p₁ *x+ c₁) *H (p₂ *x+ c₂) =
((p₁ *H p₂) *x+H (p₁ *HN c₂ +H c₁ *NH p₂)) *x+HN (c₁ *N c₂)
_*N_ : Normal n → Normal n → Normal n
con c₁ *N con c₂ = con (c₁ C.* c₂)
poly p₁ *N poly p₂ = poly (p₁ *H p₂)
_^N_ : Normal n → ℕ → Normal n
p ^N zero = 1N
p ^N suc n = p *N (p ^N n)
mutual
-H_ : HNF (suc n) → HNF (suc n)
-H p = (-N 1N) *NH p
-N_ : Normal n → Normal n
-N con c = con (C.- c)
-N poly p = poly (-H p)
normalise-con : C.Carrier → Normal n
normalise-con {zero} c = con c
normalise-con {suc n} c = poly (∅ *x+HN normalise-con c)
normalise-var : Fin n → Normal n
normalise-var zero = poly ((∅ *x+ 1N) *x+ 0N)
normalise-var (suc i) = poly (∅ *x+HN normalise-var i)
normalise : Polynomial n → Normal n
normalise (op [+] t₁ t₂) = normalise t₁ +N normalise t₂
normalise (op [*] t₁ t₂) = normalise t₁ *N normalise t₂
normalise (con c) = normalise-con c
normalise (var i) = normalise-var i
normalise (t :^ k) = normalise t ^N k
normalise (:- t) = -N normalise t
⟦_⟧↓ : Polynomial n → Env n → Carrier
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#9295}{\htmlId{9295}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ = $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{9306}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#9295}{\htmlId{9316}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ
0N-homo : ∀ {n} ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6715}{\htmlId{9443}{\htmlClass{Function}{\text{0N}}}}\, \,\htmlId{9446}{\htmlClass{Symbol}{\text{{}}}\,\,\href{Algebra.Solver.Ring.html#9434}{\htmlId{9447}{\htmlClass{Bound}{\text{n}}}}\,\,\htmlId{9448}{\htmlClass{Symbol}{\text{}}}}\, \end{pmatrix}$ ρ ≈ 0#
0N-homo [] = 0-homo
0N-homo (x ∷ ρ) = refl
0≈⟦0⟧ : ∀ {n} {c : Normal n} → c ≈N 0N → ∀ ρ → 0# ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#9585}{\htmlId{9624}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ
0≈⟦0⟧ {c = c} c≈0 ρ = sym (begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#9642}{\htmlId{9668}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ ≈⟨ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#9645}{\htmlId{9682}{\htmlClass{Bound}{\text{c≈0}}}}\, \end{pmatrix}$ ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6715}{\htmlId{9702}{\htmlClass{Function}{\text{0N}}}}\, \end{pmatrix}$ ρ ≈⟨ 0N-homo ρ ⟩
0# ∎)
1N-homo : ∀ {n} ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6838}{\htmlId{9765}{\htmlClass{Function}{\text{1N}}}}\, \,\htmlId{9768}{\htmlClass{Symbol}{\text{{}}}\,\,\href{Algebra.Solver.Ring.html#9756}{\htmlId{9769}{\htmlClass{Bound}{\text{n}}}}\,\,\htmlId{9770}{\htmlClass{Symbol}{\text{}}}}\, \end{pmatrix}$ ρ ≈ 1#
1N-homo [] = 1-homo
1N-homo (x ∷ ρ) = begin
0# * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6838}{\htmlId{9844}{\htmlClass{Function}{\text{1N}}}}\, \end{pmatrix}$ ρ ≈⟨ refl ⟨ +-cong ⟩ 1N-homo ρ ⟩
0# * x + 1# ≈⟨ lemma₆ _ _ ⟩
1# ∎
*x+HN≈*x+ : ∀ {n} (p : HNF (suc n)) (c : Normal n) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#9997}{\htmlId{10051}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{10053}{\htmlClass{Function Operator}{\text{*x+HN}}}}\, \,\href{Algebra.Solver.Ring.html#10015}{\htmlId{10059}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#9997}{\htmlId{10070}{\htmlClass{Bound}{\text{p}}}}\, \,\htmlId{10072}{\htmlClass{InductiveConstructor Operator}{\text{*x+}}}\, \,\href{Algebra.Solver.Ring.html#10015}{\htmlId{10076}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ
*x+HN≈*x+ (p *x+ c′) c ρ = refl
*x+HN≈*x+ ∅ c (x ∷ ρ) with c ≟N 0N
... | just c≈0 = begin
0# ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟩
$\begin{pmatrix} \,\htmlId{10230}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ ≈⟨ sym $ lemma₆ _ _ ⟩
0# * x + $\begin{pmatrix} \,\htmlId{10282}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ ∎
... | nothing = refl
∅*x+HN-homo : ∀ {n} (c : Normal n) x ρ →
$\begin{pmatrix} \,\htmlId{10371}{\htmlClass{InductiveConstructor}{\text{∅}}}\, \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{10373}{\htmlClass{Function Operator}{\text{*x+HN}}}}\, \,\href{Algebra.Solver.Ring.html#10335}{\htmlId{10379}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10335}{\htmlId{10396}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ
∅*x+HN-homo c x ρ with c ≟N 0N
... | just c≈0 = 0≈⟦0⟧ c≈0 ρ
... | nothing = lemma₆ _ _
mutual
+H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10518}{\htmlId{10561}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{10564}{\htmlClass{Function Operator}{\text{+H}}}}\, \,\href{Algebra.Solver.Ring.html#10521}{\htmlId{10567}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10518}{\htmlId{10579}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10521}{\htmlId{10591}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
+H-homo ∅ p₂ ρ = sym (+-identityˡ _)
+H-homo (p₁ *x+ x₁) ∅ ρ = sym (+-identityʳ _)
+H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin
$\begin{pmatrix} (\,\href{Algebra.Solver.Ring.html#10738}{\htmlId{10784}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{10787}{\htmlClass{Function Operator}{\text{+H}}}}\, \,\href{Algebra.Solver.Ring.html#10750}{\htmlId{10790}{\htmlClass{Bound}{\text{p₂}}}}\,) \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{10794}{\htmlClass{Function Operator}{\text{*x+HN}}}}\, (\,\href{Algebra.Solver.Ring.html#10745}{\htmlId{10801}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#7299}{\htmlId{10804}{\htmlClass{Function Operator}{\text{+N}}}}\, \,\href{Algebra.Solver.Ring.html#10757}{\htmlId{10807}{\htmlClass{Bound}{\text{c₂}}}}\,) \end{pmatrix}$ (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) (c₁ +N c₂) (x ∷ ρ) ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10738}{\htmlId{10900}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{10903}{\htmlClass{Function Operator}{\text{+H}}}}\, \,\href{Algebra.Solver.Ring.html#10750}{\htmlId{10906}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10745}{\htmlId{10928}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#7299}{\htmlId{10931}{\htmlClass{Function Operator}{\text{+N}}}}\, \,\href{Algebra.Solver.Ring.html#10757}{\htmlId{10934}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ +N-homo c₁ c₂ ρ ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10738}{\htmlId{11045}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10750}{\htmlId{11063}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ)) * x + ($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10745}{\htmlId{11087}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10757}{\htmlId{11099}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ) ≈⟨ lemma₁ _ _ _ _ _ ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10738}{\htmlId{11139}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10745}{\htmlId{11161}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ) +
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10750}{\htmlId{11179}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#10757}{\htmlId{11201}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ) ∎
+N-homo : ∀ {n} (p₁ p₂ : Normal n) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11265}{\htmlId{11305}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7299}{\htmlId{11308}{\htmlClass{Function Operator}{\text{+N}}}}\, \,\href{Algebra.Solver.Ring.html#11268}{\htmlId{11311}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11265}{\htmlId{11323}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11268}{\htmlId{11335}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
+N-homo (con c₁) (con c₂) _ = +-homo _ _
+N-homo (poly p₁) (poly p₂) ρ = +H-homo p₁ p₂ ρ
*x+H-homo :
∀ {n} (p₁ p₂ : HNF (suc n)) x ρ →
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11460}{\htmlId{11491}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7436}{\htmlId{11494}{\htmlClass{Function Operator}{\text{*x+H}}}}\, \,\href{Algebra.Solver.Ring.html#11463}{\htmlId{11499}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11460}{\htmlId{11519}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11463}{\htmlId{11541}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ)
*x+H-homo ∅ ∅ _ _ = sym $ lemma₆ _ _
*x+H-homo (p *x+ c) ∅ x ρ = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11611}{\htmlId{11638}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#4308}{\htmlId{11640}{\htmlClass{InductiveConstructor Operator}{\text{*x+}}}}\, \,\href{Algebra.Solver.Ring.html#11617}{\htmlId{11644}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6715}{\htmlId{11665}{\htmlClass{Function}{\text{0N}}}}\, \end{pmatrix}$ ρ ≈⟨ refl ⟨ +-cong ⟩ 0N-homo ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11611}{\htmlId{11709}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#4308}{\htmlId{11711}{\htmlClass{InductiveConstructor Operator}{\text{*x+}}}}\, \,\href{Algebra.Solver.Ring.html#11617}{\htmlId{11715}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + 0# ∎
*x+H-homo p₁ (p₂ *x+ c₂) x ρ = begin
$\begin{pmatrix} (\,\href{Algebra.Solver.Ring.html#11757}{\htmlId{11797}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{11800}{\htmlClass{Function Operator}{\text{+H}}}}\, \,\href{Algebra.Solver.Ring.html#11769}{\htmlId{11803}{\htmlClass{Bound}{\text{p₂}}}}\,) \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{11807}{\htmlClass{Function Operator}{\text{*x+HN}}}}\, \,\href{Algebra.Solver.Ring.html#11776}{\htmlId{11813}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈⟨ *x+HN≈*x+ (p₁ +H p₂) c₂ (x ∷ ρ) ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11757}{\htmlId{11892}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{11895}{\htmlClass{Function Operator}{\text{+H}}}}\, \,\href{Algebra.Solver.Ring.html#11769}{\htmlId{11898}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11776}{\htmlId{11920}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ ≈⟨ (+H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ refl ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11757}{\htmlId{12013}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11769}{\htmlId{12031}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ)) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11776}{\htmlId{12054}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ ≈⟨ lemma₀ _ _ _ _ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11757}{\htmlId{12091}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + ($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11769}{\htmlId{12114}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#11776}{\htmlId{12136}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ) ∎
mutual
*NH-homo :
∀ {n} (c : Normal n) (p : HNF (suc n)) x ρ →
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#12181}{\htmlId{12225}{\htmlClass{Bound}{\text{c}}}}\, \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{12227}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\href{Algebra.Solver.Ring.html#12196}{\htmlId{12231}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#12181}{\htmlId{12248}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#12196}{\htmlId{12259}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ)
*NH-homo c ∅ x ρ = sym (*-zeroʳ _)
*NH-homo c (p *x+ c′) x ρ with c ≟N 0N
... | just c≈0 = begin
0# ≈⟨ sym (*-zeroˡ _) ⟩
0# * ($\begin{pmatrix} \,\htmlId{12467}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{12488}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) ≈⟨ 0≈⟦0⟧ c≈0 ρ ⟨ *-cong ⟩ refl ⟩
$\begin{pmatrix} \,\htmlId{12544}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ * ($\begin{pmatrix} \,\htmlId{12557}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{12578}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) ∎
... | nothing = begin
$\begin{pmatrix} \,\htmlId{12620}{\htmlClass{Bound}{\text{c}}}\, \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{12622}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\htmlId{12626}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{12647}{\htmlClass{Bound}{\text{c}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{12649}{\htmlClass{Function Operator}{\text{*N}}}}\, \,\htmlId{12652}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ ≈⟨ (*NH-homo c p x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c c′ ρ ⟩
($\begin{pmatrix} \,\htmlId{12749}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\htmlId{12760}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ)) * x + ($\begin{pmatrix} \,\htmlId{12783}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\htmlId{12794}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) ≈⟨ lemma₃ _ _ _ _ ⟩
$\begin{pmatrix} \,\htmlId{12830}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ * ($\begin{pmatrix} \,\htmlId{12842}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{12863}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) ∎
*HN-homo :
∀ {n} (p : HNF (suc n)) (c : Normal n) x ρ →
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#12913}{\htmlId{12957}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#7789}{\htmlId{12959}{\htmlClass{Function Operator}{\text{*HN}}}}\, \,\href{Algebra.Solver.Ring.html#12931}{\htmlId{12963}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#12913}{\htmlId{12980}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#12931}{\htmlId{12997}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ
*HN-homo ∅ c x ρ = sym (*-zeroˡ _)
*HN-homo (p *x+ c′) c x ρ with c ≟N 0N
... | just c≈0 = begin
0# ≈⟨ sym (*-zeroʳ _) ⟩
($\begin{pmatrix} \,\htmlId{13193}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{13214}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) * 0# ≈⟨ refl ⟨ *-cong ⟩ 0≈⟦0⟧ c≈0 ρ ⟩
($\begin{pmatrix} \,\htmlId{13275}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{13296}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) * $\begin{pmatrix} \,\htmlId{13309}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ ∎
... | nothing = begin
$\begin{pmatrix} \,\htmlId{13349}{\htmlClass{Bound}{\text{p}}}\, \,\href{Algebra.Solver.Ring.html#7789}{\htmlId{13351}{\htmlClass{Function Operator}{\text{*HN}}}}\, \,\htmlId{13355}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{13376}{\htmlClass{Bound}{\text{c′}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{13379}{\htmlClass{Function Operator}{\text{*N}}}}\, \,\htmlId{13382}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ ≈⟨ (*HN-homo p c x ρ ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ *N-homo c′ c ρ ⟩
($\begin{pmatrix} \,\htmlId{13478}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * $\begin{pmatrix} \,\htmlId{13495}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ) * x + ($\begin{pmatrix} \,\htmlId{13512}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\htmlId{13524}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ) ≈⟨ lemma₂ _ _ _ _ ⟩
($\begin{pmatrix} \,\htmlId{13560}{\htmlClass{Bound}{\text{p}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\htmlId{13581}{\htmlClass{Bound}{\text{c′}}}\, \end{pmatrix}$ ρ) * $\begin{pmatrix} \,\htmlId{13594}{\htmlClass{Bound}{\text{c}}}\, \end{pmatrix}$ ρ ∎
*H-homo : ∀ {n} (p₁ p₂ : HNF (suc n)) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13637}{\htmlId{13680}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7956}{\htmlId{13683}{\htmlClass{Function Operator}{\text{*H}}}}\, \,\href{Algebra.Solver.Ring.html#13640}{\htmlId{13686}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13637}{\htmlId{13698}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13640}{\htmlId{13710}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
*H-homo ∅ p₂ ρ = sym $ *-zeroˡ _
*H-homo (p₁ *x+ c₁) ∅ ρ = sym $ *-zeroʳ _
*H-homo (p₁ *x+ c₁) (p₂ *x+ c₂) (x ∷ ρ) = begin
$\begin{pmatrix} (\,\href{Algebra.Solver.Ring.html#13849}{\htmlId{13896}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7956}{\htmlId{13899}{\htmlClass{Function Operator}{\text{*H}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{13902}{\htmlClass{Bound}{\text{p₂}}}}\,) \,\href{Algebra.Solver.Ring.html#7436}{\htmlId{13906}{\htmlClass{Function Operator}{\text{*x+H}}}}\, (\,\href{Algebra.Solver.Ring.html#13849}{\htmlId{13913}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7789}{\htmlId{13916}{\htmlClass{Function Operator}{\text{*HN}}}}\, \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{13920}{\htmlClass{Bound}{\text{c₂}}}}\,) \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{13924}{\htmlClass{Function Operator}{\text{+H}}}}\, (\,\href{Algebra.Solver.Ring.html#13856}{\htmlId{13928}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{13931}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{13935}{\htmlClass{Bound}{\text{p₂}}}}\,) \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{13941}{\htmlClass{Function Operator}{\text{*x+HN}}}}\,
(\,\href{Algebra.Solver.Ring.html#13856}{\htmlId{13954}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{13957}{\htmlClass{Function Operator}{\text{*N}}}}\, \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{13960}{\htmlClass{Bound}{\text{c₂}}}}\,) \end{pmatrix}$ (x ∷ ρ) ≈⟨ *x+HN≈*x+ ((p₁ *H p₂) *x+H ((p₁ *HN c₂) +H (c₁ *NH p₂)))
(c₁ *N c₂) (x ∷ ρ) ⟩
$\begin{pmatrix} (\,\href{Algebra.Solver.Ring.html#13849}{\htmlId{14194}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7956}{\htmlId{14197}{\htmlClass{Function Operator}{\text{*H}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{14200}{\htmlClass{Bound}{\text{p₂}}}}\,) \,\href{Algebra.Solver.Ring.html#7436}{\htmlId{14204}{\htmlClass{Function Operator}{\text{*x+H}}}}\,
(\,\href{Algebra.Solver.Ring.html#13849}{\htmlId{14217}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7789}{\htmlId{14220}{\htmlClass{Function Operator}{\text{*HN}}}}\, \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{14224}{\htmlClass{Bound}{\text{c₂}}}}\,) \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{14228}{\htmlClass{Function Operator}{\text{+H}}}}\, (\,\href{Algebra.Solver.Ring.html#13856}{\htmlId{14232}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{14235}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{14239}{\htmlClass{Bound}{\text{p₂}}}}\,) \end{pmatrix}$ (x ∷ ρ) * x +
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{14267}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{14270}{\htmlClass{Function Operator}{\text{*N}}}}\, \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{14273}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ ≈⟨ (*x+H-homo (p₁ *H p₂) ((p₁ *HN c₂) +H (c₁ *NH p₂)) x ρ
⟨ *-cong ⟩
refl)
⟨ +-cong ⟩
*N-homo c₁ c₂ ρ ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13849}{\htmlId{14755}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7956}{\htmlId{14758}{\htmlClass{Function Operator}{\text{*H}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{14761}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x +
$\begin{pmatrix} (\,\href{Algebra.Solver.Ring.html#13849}{\htmlId{14789}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7789}{\htmlId{14792}{\htmlClass{Function Operator}{\text{*HN}}}}\, \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{14796}{\htmlClass{Bound}{\text{c₂}}}}\,) \,\href{Algebra.Solver.Ring.html#7124}{\htmlId{14800}{\htmlClass{Function Operator}{\text{+H}}}}\, (\,\href{Algebra.Solver.Ring.html#13856}{\htmlId{14804}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{14807}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{14811}{\htmlClass{Bound}{\text{p₂}}}}\,) \end{pmatrix}$ (x ∷ ρ)) * x +
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{14839}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{14851}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ ≈⟨ (((*H-homo p₁ p₂ (x ∷ ρ) ⟨ *-cong ⟩ refl)
⟨ +-cong ⟩
(+H-homo (p₁ *HN c₂) (c₁ *NH p₂) (x ∷ ρ)))
⟨ *-cong ⟩
refl)
⟨ +-cong ⟩
refl ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13849}{\htmlId{15515}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{15533}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x +
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13849}{\htmlId{15561}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7789}{\htmlId{15564}{\htmlClass{Function Operator}{\text{*HN}}}}\, \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{15568}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ (x ∷ ρ) + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{15586}{\htmlClass{Bound}{\text{c₁}}}}\, \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{15589}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{15593}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ))) * x +
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{15621}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{15633}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ ≈⟨ ((refl ⟨ +-cong ⟩ (*HN-homo p₁ c₂ x ρ ⟨ +-cong ⟩ *NH-homo c₁ p₂ x ρ))
⟨ *-cong ⟩
refl)
⟨ +-cong ⟩
refl ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13849}{\htmlId{16113}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{16131}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x +
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13849}{\htmlId{16159}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{16177}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{16189}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{16201}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ))) * x +
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{16230}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{16242}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ) ≈⟨ lemma₄ _ _ _ _ _ ⟩
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13849}{\htmlId{16326}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13856}{\htmlId{16348}{\htmlClass{Bound}{\text{c₁}}}}\, \end{pmatrix}$ ρ) *
($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13861}{\htmlId{16366}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ (x ∷ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#13868}{\htmlId{16388}{\htmlClass{Bound}{\text{c₂}}}}\, \end{pmatrix}$ ρ) ∎
*N-homo : ∀ {n} (p₁ p₂ : Normal n) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16454}{\htmlId{16494}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{16497}{\htmlClass{Function Operator}{\text{*N}}}}\, \,\href{Algebra.Solver.Ring.html#16457}{\htmlId{16500}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16454}{\htmlId{16512}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16457}{\htmlId{16524}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ
*N-homo (con c₁) (con c₂) _ = *-homo _ _
*N-homo (poly p₁) (poly p₂) ρ = *H-homo p₁ p₂ ρ
^N-homo : ∀ {n} (p : Normal n) (k : ℕ) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16645}{\htmlId{16687}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#8304}{\htmlId{16689}{\htmlClass{Function Operator}{\text{^N}}}}\, \,\href{Algebra.Solver.Ring.html#16660}{\htmlId{16692}{\htmlClass{Bound}{\text{k}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16645}{\htmlId{16703}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ^ k
^N-homo p zero ρ = 1N-homo ρ
^N-homo p (suc k) ρ = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16754}{\htmlId{16778}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{16780}{\htmlClass{Function Operator}{\text{*N}}}}\, (\,\href{Algebra.Solver.Ring.html#16754}{\htmlId{16784}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#8304}{\htmlId{16786}{\htmlClass{Function Operator}{\text{^N}}}}\, \,\href{Algebra.Solver.Ring.html#16761}{\htmlId{16789}{\htmlClass{Bound}{\text{k}}}}\,) \end{pmatrix}$ ρ ≈⟨ *N-homo p (p ^N k) ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16754}{\htmlId{16833}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16754}{\htmlId{16844}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#8304}{\htmlId{16846}{\htmlClass{Function Operator}{\text{^N}}}}\, \,\href{Algebra.Solver.Ring.html#16761}{\htmlId{16849}{\htmlClass{Bound}{\text{k}}}}\, \end{pmatrix}$ ρ ≈⟨ refl ⟨ *-cong ⟩ ^N-homo p k ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16754}{\htmlId{16897}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ * ($\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16754}{\htmlId{16909}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ^ k) ∎
mutual
-H‿-homo : ∀ {n} (p : HNF (suc n)) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8405}{\htmlId{16993}{\htmlClass{Function Operator}{\text{-H}}}}\, \,\href{Algebra.Solver.Ring.html#16953}{\htmlId{16996}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ≈ - $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#16953}{\htmlId{17009}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ
-H‿-homo p (x ∷ ρ) = begin
$\begin{pmatrix} (\,\href{Algebra.Solver.Ring.html#8463}{\htmlId{17052}{\htmlClass{Function Operator}{\text{-N}}}}\, \,\href{Algebra.Solver.Ring.html#6838}{\htmlId{17055}{\htmlClass{Function}{\text{1N}}}}\,) \,\href{Algebra.Solver.Ring.html#7622}{\htmlId{17059}{\htmlClass{Function Operator}{\text{*NH}}}}\, \,\href{Algebra.Solver.Ring.html#17027}{\htmlId{17063}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈⟨ *NH-homo (-N 1N) p x ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8463}{\htmlId{17114}{\htmlClass{Function Operator}{\text{-N}}}}\, \,\href{Algebra.Solver.Ring.html#6838}{\htmlId{17117}{\htmlClass{Function}{\text{1N}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#17027}{\htmlId{17129}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈⟨ trans (-N‿-homo 1N ρ) (-‿cong (1N-homo ρ)) ⟨ *-cong ⟩ refl ⟩
- 1# * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#17027}{\htmlId{17220}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈⟨ lemma₇ _ ⟩
- $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#17027}{\htmlId{17264}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ (x ∷ ρ) ∎
-N‿-homo : ∀ {n} (p : Normal n) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8463}{\htmlId{17351}{\htmlClass{Function Operator}{\text{-N}}}}\, \,\href{Algebra.Solver.Ring.html#17314}{\htmlId{17354}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ≈ - $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#17314}{\htmlId{17367}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ
-N‿-homo (con c) _ = -‿homo _
-N‿-homo (poly p) ρ = -H‿-homo p ρ
correct-con : ∀ {n} (c : C.Carrier) (ρ : Env n) →
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8633}{\htmlId{17600}{\htmlClass{Function}{\text{normalise-con}}}}\, \,\href{Algebra.Solver.Ring.html#17555}{\htmlId{17614}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#17555}{\htmlId{17625}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$
correct-con c [] = refl
correct-con c (x ∷ ρ) = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4284}{\htmlId{17693}{\htmlClass{InductiveConstructor}{\text{∅}}}}\, \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{17695}{\htmlClass{Function Operator}{\text{*x+HN}}}}\, \,\href{Algebra.Solver.Ring.html#8633}{\htmlId{17701}{\htmlClass{Function}{\text{normalise-con}}}}\, \,\href{Algebra.Solver.Ring.html#17671}{\htmlId{17715}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-con c) x ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8633}{\htmlId{17772}{\htmlClass{Function}{\text{normalise-con}}}}\, \,\href{Algebra.Solver.Ring.html#17671}{\htmlId{17786}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ρ ≈⟨ correct-con c ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#17671}{\htmlId{17829}{\htmlClass{Bound}{\text{c}}}}\, \end{pmatrix}$ ∎
correct-var : ∀ {n} (i : Fin n) →
∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8760}{\htmlId{17927}{\htmlClass{Function}{\text{normalise-var}}}}\, \,\href{Algebra.Solver.Ring.html#17892}{\htmlId{17941}{\htmlClass{Bound}{\text{i}}}}\, \end{pmatrix}$ ρ ≈ lookup ρ i
correct-var (suc i) (x ∷ ρ) = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#4284}{\htmlId{18001}{\htmlClass{InductiveConstructor}{\text{∅}}}}\, \,\href{Algebra.Solver.Ring.html#6936}{\htmlId{18003}{\htmlClass{Function Operator}{\text{*x+HN}}}}\, \,\href{Algebra.Solver.Ring.html#8760}{\htmlId{18009}{\htmlClass{Function}{\text{normalise-var}}}}\, \,\href{Algebra.Solver.Ring.html#17978}{\htmlId{18023}{\htmlClass{Bound}{\text{i}}}}\, \end{pmatrix}$ (x ∷ ρ) ≈⟨ ∅*x+HN-homo (normalise-var i) x ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8760}{\htmlId{18080}{\htmlClass{Function}{\text{normalise-var}}}}\, \,\href{Algebra.Solver.Ring.html#17978}{\htmlId{18094}{\htmlClass{Bound}{\text{i}}}}\, \end{pmatrix}$ ρ ≈⟨ correct-var i ρ ⟩
lookup ρ i ∎
correct-var zero (x ∷ ρ) = begin
(0# * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6838}{\htmlId{18226}{\htmlClass{Function}{\text{1N}}}}\, \end{pmatrix}$ ρ) * x + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#6715}{\htmlId{18243}{\htmlClass{Function}{\text{0N}}}}\, \end{pmatrix}$ ρ ≈⟨ ((refl ⟨ +-cong ⟩ 1N-homo ρ) ⟨ *-cong ⟩ refl) ⟨ +-cong ⟩ 0N-homo ρ ⟩
(0# * x + 1#) * x + 0# ≈⟨ lemma₅ _ ⟩
x ∎
correct : ∀ {n} (p : Polynomial n) → ∀ ρ → $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18438}{\htmlId{18466}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ≈ $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18438}{\htmlId{18477}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ
correct (op [+] p₁ p₂) ρ = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{18520}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#18499}{\htmlId{18530}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#7299}{\htmlId{18533}{\htmlClass{Function Operator}{\text{+N}}}}\, \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{18536}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#18502}{\htmlId{18546}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈⟨ +N-homo (normalise p₁) (normalise p₂) ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18499}{\htmlId{18604}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18502}{\htmlId{18616}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈⟨ correct p₁ ρ ⟨ +-cong ⟩ correct p₂ ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18499}{\htmlId{18685}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ + $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18502}{\htmlId{18696}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ∎
correct (op [*] p₁ p₂) ρ = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{18759}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#18738}{\htmlId{18769}{\htmlClass{Bound}{\text{p₁}}}}\, \,\href{Algebra.Solver.Ring.html#8167}{\htmlId{18772}{\htmlClass{Function Operator}{\text{*N}}}}\, \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{18775}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#18741}{\htmlId{18785}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈⟨ *N-homo (normalise p₁) (normalise p₂) ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18738}{\htmlId{18843}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18741}{\htmlId{18855}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ≈⟨ correct p₁ ρ ⟨ *-cong ⟩ correct p₂ ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18738}{\htmlId{18924}{\htmlClass{Bound}{\text{p₁}}}}\, \end{pmatrix}$ ρ * $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#18741}{\htmlId{18935}{\htmlClass{Bound}{\text{p₂}}}}\, \end{pmatrix}$ ρ ∎
correct (con c) ρ = correct-con c ρ
correct (var i) ρ = correct-var i ρ
correct (p :^ k) ρ = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{19066}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#19044}{\htmlId{19076}{\htmlClass{Bound}{\text{p}}}}\, \,\href{Algebra.Solver.Ring.html#8304}{\htmlId{19078}{\htmlClass{Function Operator}{\text{^N}}}}\, \,\href{Algebra.Solver.Ring.html#19049}{\htmlId{19081}{\htmlClass{Bound}{\text{k}}}}\, \end{pmatrix}$ ρ ≈⟨ ^N-homo (normalise p) k ρ ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#19044}{\htmlId{19124}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ^ k ≈⟨ correct p ρ ⟨ ^-cong ⟩ ≡.refl {x = k} ⟩
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#19044}{\htmlId{19194}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ^ k ∎
correct (:- p) ρ = begin
$\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#8463}{\htmlId{19248}{\htmlClass{Function Operator}{\text{-N}}}}\, \,\href{Algebra.Solver.Ring.html#8898}{\htmlId{19251}{\htmlClass{Function}{\text{normalise}}}}\, \,\href{Algebra.Solver.Ring.html#19231}{\htmlId{19261}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ≈⟨ -N‿-homo (normalise p) ρ ⟩
- $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#19231}{\htmlId{19305}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ≈⟨ -‿cong (correct p ρ) ⟩
- $\begin{pmatrix} \,\href{Algebra.Solver.Ring.html#19231}{\htmlId{19356}{\htmlClass{Bound}{\text{p}}}}\, \end{pmatrix}$ ρ ∎
open Reflection setoid var ⟦_⟧ ⟦_⟧↓ correct public
using (prove; solve) renaming (_⊜_ to _:=_)