{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE NoStarIsType #-}
module Cardano.Crypto.KES.CompactSum (
CompactSumKES,
VerKeyKES (..),
SignKeyKES (..),
SigKES (..),
CompactSum0KES,
CompactSum1KES,
CompactSum2KES,
CompactSum3KES,
CompactSum4KES,
CompactSum5KES,
CompactSum6KES,
CompactSum7KES,
) where
import Control.Monad (guard, (<$!>))
import qualified Data.ByteString as BS
import qualified Data.ByteString.Internal as BS
import Data.Proxy (Proxy (..))
import GHC.Generics (Generic)
import NoThunks.Class (NoThunks, OnlyCheckWhnfNamed (..))
import Cardano.Binary (FromCBOR (..), ToCBOR (..))
import Cardano.Crypto.DirectSerialise
import Cardano.Crypto.Hash.Class
import Cardano.Crypto.KES.Class
import Cardano.Crypto.KES.CompactSingle (CompactSingleKES)
import Cardano.Crypto.Libsodium
import Cardano.Crypto.Libsodium.MLockedSeed
import Cardano.Crypto.Libsodium.Memory
import Cardano.Crypto.Seed
import Cardano.Crypto.Util
import Control.DeepSeq (NFData (..))
import Control.Monad.Trans (lift)
import Control.Monad.Trans.Maybe (MaybeT (..), runMaybeT)
import Foreign.Ptr (castPtr)
import GHC.TypeLits (KnownNat, type (*), type (+))
type CompactSum0KES d = CompactSingleKES d
type CompactSum1KES d h = CompactSumKES h (CompactSum0KES d)
type CompactSum2KES d h = CompactSumKES h (CompactSum1KES d h)
type CompactSum3KES d h = CompactSumKES h (CompactSum2KES d h)
type CompactSum4KES d h = CompactSumKES h (CompactSum3KES d h)
type CompactSum5KES d h = CompactSumKES h (CompactSum4KES d h)
type CompactSum6KES d h = CompactSumKES h (CompactSum5KES d h)
type CompactSum7KES d h = CompactSumKES h (CompactSum6KES d h)
data CompactSumKES h d
instance
(NFData (SigKES d), NFData (VerKeyKES d)) =>
NFData (SigKES (CompactSumKES h d))
instance
(NFData (SignKeyKES d), NFData (VerKeyKES d)) =>
NFData (SignKeyKES (CompactSumKES h d))
where
rnf :: SignKeyKES (CompactSumKES h d) -> ()
rnf (SignKeyCompactSumKES SignKeyKES d
sk MLockedSeed (SeedSizeKES d)
r VerKeyKES d
vk1 VerKeyKES d
vk2) =
forall a. NFData a => a -> ()
rnf (SignKeyKES d
sk, MLockedSeed (SeedSizeKES d)
r, VerKeyKES d
vk1, VerKeyKES d
vk2)
instance
( OptimizedKESAlgorithm d
, SodiumHashAlgorithm h
, SizeHash h ~ SeedSizeKES d
, NoThunks (VerKeyKES (CompactSumKES h d))
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
KESAlgorithm (CompactSumKES h d)
where
type SeedSizeKES (CompactSumKES h d) = SeedSizeKES d
newtype VerKeyKES (CompactSumKES h d)
= VerKeyCompactSumKES (Hash h (VerKeyKES d, VerKeyKES d))
deriving (forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall h d x.
Rep (VerKeyKES (CompactSumKES h d)) x
-> VerKeyKES (CompactSumKES h d)
forall h d x.
VerKeyKES (CompactSumKES h d)
-> Rep (VerKeyKES (CompactSumKES h d)) x
$cto :: forall h d x.
Rep (VerKeyKES (CompactSumKES h d)) x
-> VerKeyKES (CompactSumKES h d)
$cfrom :: forall h d x.
VerKeyKES (CompactSumKES h d)
-> Rep (VerKeyKES (CompactSumKES h d)) x
Generic)
deriving newtype (VerKeyKES (CompactSumKES h d) -> ()
forall a. (a -> ()) -> NFData a
forall h d. VerKeyKES (CompactSumKES h d) -> ()
rnf :: VerKeyKES (CompactSumKES h d) -> ()
$crnf :: forall h d. VerKeyKES (CompactSumKES h d) -> ()
NFData)
data SigKES (CompactSumKES h d)
= SigCompactSumKES
!(SigKES d)
!(VerKeyKES d)
deriving (forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall h d x.
Rep (SigKES (CompactSumKES h d)) x -> SigKES (CompactSumKES h d)
forall h d x.
SigKES (CompactSumKES h d) -> Rep (SigKES (CompactSumKES h d)) x
$cto :: forall h d x.
Rep (SigKES (CompactSumKES h d)) x -> SigKES (CompactSumKES h d)
$cfrom :: forall h d x.
SigKES (CompactSumKES h d) -> Rep (SigKES (CompactSumKES h d)) x
Generic)
data SignKeyKES (CompactSumKES h d)
= SignKeyCompactSumKES
!(SignKeyKES d)
!(MLockedSeed (SeedSizeKES d))
!(VerKeyKES d)
!(VerKeyKES d)
algorithmNameKES :: forall (proxy :: Type -> Type). proxy (CompactSumKES h d) -> String
algorithmNameKES proxy (CompactSumKES h d)
_ = String -> String
mungeName (forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> String
algorithmNameKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d))
hashVerKeyKES :: forall h.
HashAlgorithm h =>
VerKeyKES (CompactSumKES h d)
-> Hash h (VerKeyKES (CompactSumKES h d))
hashVerKeyKES (VerKeyCompactSumKES Hash h (VerKeyKES d, VerKeyKES d)
vk) = forall h a b. Hash h a -> Hash h b
castHash (forall h a. HashAlgorithm h => (a -> ByteString) -> a -> Hash h a
hashWith forall h a. Hash h a -> ByteString
hashToBytes Hash h (VerKeyKES d, VerKeyKES d)
vk)
type Signable (CompactSumKES h d) = Signable d
type ContextKES (CompactSumKES h d) = ContextKES d
verifyKES :: forall a.
(Signable (CompactSumKES h d) a, HasCallStack) =>
ContextKES (CompactSumKES h d)
-> VerKeyKES (CompactSumKES h d)
-> Period
-> a
-> SigKES (CompactSumKES h d)
-> Either String ()
verifyKES = forall v a.
(OptimizedKESAlgorithm v, Signable v a, HasCallStack) =>
ContextKES v
-> VerKeyKES v -> Period -> a -> SigKES v -> Either String ()
verifyOptimizedKES
totalPeriodsKES :: forall (proxy :: Type -> Type). proxy (CompactSumKES h d) -> Period
totalPeriodsKES proxy (CompactSumKES h d)
_ = Period
2 forall a. Num a => a -> a -> a
* forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
type SizeVerKeyKES (CompactSumKES h d) = SizeHash h
type
SizeSignKeyKES (CompactSumKES h d) =
SizeSignKeyKES d
+ SeedSizeKES d
+ SizeVerKeyKES d * 2
type
SizeSigKES (CompactSumKES h d) =
SizeSigKES d
+ SizeVerKeyKES d
rawSerialiseVerKeyKES :: VerKeyKES (CompactSumKES h d) -> ByteString
rawSerialiseVerKeyKES (VerKeyCompactSumKES Hash h (VerKeyKES d, VerKeyKES d)
vk) = forall h a. Hash h a -> ByteString
hashToBytes Hash h (VerKeyKES d, VerKeyKES d)
vk
rawSerialiseSigKES :: SigKES (CompactSumKES h d) -> ByteString
rawSerialiseSigKES (SigCompactSumKES SigKES d
sigma VerKeyKES d
vk_other) =
forall a. Monoid a => [a] -> a
mconcat
[ forall v. KESAlgorithm v => SigKES v -> ByteString
rawSerialiseSigKES SigKES d
sigma
, forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_other
]
rawDeserialiseVerKeyKES :: ByteString -> Maybe (VerKeyKES (CompactSumKES h d))
rawDeserialiseVerKeyKES = forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall h a. HashAlgorithm h => ByteString -> Maybe (Hash h a)
hashFromBytes
rawDeserialiseSigKES :: ByteString -> Maybe (SigKES (CompactSumKES h d))
rawDeserialiseSigKES ByteString
b = do
forall (f :: Type -> Type). Alternative f => Bool -> f ()
guard (ByteString -> Int
BS.length ByteString
b forall a. Eq a => a -> a -> Bool
== forall a b. (Integral a, Num b) => a -> b
fromIntegral Period
size_total)
SigKES d
sigma <- forall v. KESAlgorithm v => ByteString -> Maybe (SigKES v)
rawDeserialiseSigKES ByteString
b_sig
VerKeyKES d
vk <- forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk
forall (m :: Type -> Type) a. Monad m => a -> m a
return (forall h d. SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
SigCompactSumKES SigKES d
sigma VerKeyKES d
vk)
where
b_sig :: ByteString
b_sig = Period -> Period -> ByteString -> ByteString
slice Period
off_sig Period
size_sig ByteString
b
b_vk :: ByteString
b_vk = Period -> Period -> ByteString -> ByteString
slice Period
off_vk Period
size_vk ByteString
b
size_sig :: Period
size_sig = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeSigKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_vk :: Period
size_vk = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeVerKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_total :: Period
size_total = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeSigKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy (CompactSumKES h d))
off_sig :: Period
off_sig = Period
0 :: Word
off_vk :: Period
off_vk = Period
size_sig
deriveVerKeyKES :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
SignKeyKES (CompactSumKES h d) -> m (VerKeyKES (CompactSumKES h d))
deriveVerKeyKES (SignKeyCompactSumKES SignKeyKES d
_ MLockedSeed (SeedSizeKES d)
_ VerKeyKES d
vk_0 VerKeyKES d
vk_1) =
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES (forall d h.
(KESAlgorithm d, HashAlgorithm h) =>
(VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
hashPairOfVKeys (VerKeyKES d
vk_0, VerKeyKES d
vk_1))
{-# NOINLINE signKES #-}
signKES :: forall a (m :: Type -> Type).
(Signable (CompactSumKES h d) a, MonadST m, MonadThrow m) =>
ContextKES (CompactSumKES h d)
-> Period
-> a
-> SignKeyKES (CompactSumKES h d)
-> m (SigKES (CompactSumKES h d))
signKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a (SignKeyCompactSumKES SignKeyKES d
sk MLockedSeed (SeedSizeKES d)
_r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) = do
SigKES d
sigma <- m (SigKES d)
getSigma
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d. SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
SigCompactSumKES SigKES d
sigma VerKeyKES d
vk_other
where
(m (SigKES d)
getSigma, VerKeyKES d
vk_other)
| Period
t forall a. Ord a => a -> a -> Bool
< Period
_T = (forall v a (m :: Type -> Type).
(KESAlgorithm v, Signable v a, MonadST m, MonadThrow m) =>
ContextKES v -> Period -> a -> SignKeyKES v -> m (SigKES v)
signKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a SignKeyKES d
sk, VerKeyKES d
vk_1)
| Bool
otherwise = (forall v a (m :: Type -> Type).
(KESAlgorithm v, Signable v a, MonadST m, MonadThrow m) =>
ContextKES v -> Period -> a -> SignKeyKES v -> m (SigKES v)
signKES ContextKES (CompactSumKES h d)
ctxt (Period
t forall a. Num a => a -> a -> a
- Period
_T) a
a SignKeyKES d
sk, VerKeyKES d
vk_0)
_T :: Period
_T = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
{-# NOINLINE updateKESWith #-}
updateKESWith :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
MLockedAllocator m
-> ContextKES (CompactSumKES h d)
-> SignKeyKES (CompactSumKES h d)
-> Period
-> m (Maybe (SignKeyKES (CompactSumKES h d)))
updateKESWith MLockedAllocator m
allocator ContextKES (CompactSumKES h d)
ctx (SignKeyCompactSumKES SignKeyKES d
sk MLockedSeed (SeedSizeKES d)
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) Period
t
| Period
t forall a. Num a => a -> a -> a
+ Period
1 forall a. Ord a => a -> a -> Bool
< Period
_T =
forall (m :: Type -> Type) a. MaybeT m a -> m (Maybe a)
runMaybeT forall a b. (a -> b) -> a -> b
$!
do
SignKeyKES d
sk' <- forall (m :: Type -> Type) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$! forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m
-> ContextKES v
-> SignKeyKES v
-> Period
-> m (Maybe (SignKeyKES v))
updateKESWith MLockedAllocator m
allocator ContextKES (CompactSumKES h d)
ctx SignKeyKES d
sk Period
t
MLockedSeed (SeedSizeKES d)
r_1' <- forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$! forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadST m) =>
MLockedAllocator m -> MLockedSeed n -> m (MLockedSeed n)
mlockedSeedCopyWith MLockedAllocator m
allocator MLockedSeed (SeedSizeKES d)
r_1
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk' MLockedSeed (SeedSizeKES d)
r_1' VerKeyKES d
vk_0 VerKeyKES d
vk_1
| Period
t forall a. Num a => a -> a -> a
+ Period
1 forall a. Eq a => a -> a -> Bool
== Period
_T = do
SignKeyKES d
sk' <- forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m
-> MLockedSeed (SeedSizeKES v) -> m (SignKeyKES v)
genKeyKESWith MLockedAllocator m
allocator MLockedSeed (SeedSizeKES d)
r_1
MLockedSeed (SeedSizeKES d)
zero <- forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadST m) =>
MLockedAllocator m -> m (MLockedSeed n)
mlockedSeedNewZeroWith MLockedAllocator m
allocator
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$! forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk' MLockedSeed (SeedSizeKES d)
zero VerKeyKES d
vk_0 VerKeyKES d
vk_1
| Bool
otherwise =
forall (m :: Type -> Type) a. MaybeT m a -> m (Maybe a)
runMaybeT forall a b. (a -> b) -> a -> b
$!
do
SignKeyKES d
sk' <- forall (m :: Type -> Type) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$! forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m
-> ContextKES v
-> SignKeyKES v
-> Period
-> m (Maybe (SignKeyKES v))
updateKESWith MLockedAllocator m
allocator ContextKES (CompactSumKES h d)
ctx SignKeyKES d
sk (Period
t forall a. Num a => a -> a -> a
- Period
_T)
MLockedSeed (SeedSizeKES d)
r_1' <- forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$! forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadST m) =>
MLockedAllocator m -> MLockedSeed n -> m (MLockedSeed n)
mlockedSeedCopyWith MLockedAllocator m
allocator MLockedSeed (SeedSizeKES d)
r_1
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk' MLockedSeed (SeedSizeKES d)
r_1' VerKeyKES d
vk_0 VerKeyKES d
vk_1
where
_T :: Period
_T = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
{-# NOINLINE genKeyKESWith #-}
genKeyKESWith :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
MLockedAllocator m
-> MLockedSeed (SeedSizeKES (CompactSumKES h d))
-> m (SignKeyKES (CompactSumKES h d))
genKeyKESWith MLockedAllocator m
allocator MLockedSeed (SeedSizeKES (CompactSumKES h d))
r = do
(MLockedSizedBytes (SeedSizeKES d)
r0raw, MLockedSizedBytes (SeedSizeKES d)
r1raw) <- forall h (m :: Type -> Type) (proxy :: Type -> Type).
(SodiumHashAlgorithm h, MonadST m, MonadThrow m) =>
MLockedAllocator m
-> proxy h
-> MLockedSizedBytes (SizeHash h)
-> m (MLockedSizedBytes (SizeHash h),
MLockedSizedBytes (SizeHash h))
expandHashWith MLockedAllocator m
allocator (forall {k} (t :: k). Proxy t
Proxy :: Proxy h) (forall (n :: Nat). MLockedSeed n -> MLockedSizedBytes n
mlockedSeedMLSB MLockedSeed (SeedSizeKES (CompactSumKES h d))
r)
let r0 :: MLockedSeed (SeedSizeKES d)
r0 = forall (n :: Nat). MLockedSizedBytes n -> MLockedSeed n
MLockedSeed MLockedSizedBytes (SeedSizeKES d)
r0raw
r1 :: MLockedSeed (SeedSizeKES d)
r1 = forall (n :: Nat). MLockedSizedBytes n -> MLockedSeed n
MLockedSeed MLockedSizedBytes (SeedSizeKES d)
r1raw
SignKeyKES d
sk_0 <- forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m
-> MLockedSeed (SeedSizeKES v) -> m (SignKeyKES v)
genKeyKESWith MLockedAllocator m
allocator MLockedSeed (SeedSizeKES d)
r0
VerKeyKES d
vk_0 <- forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
SignKeyKES v -> m (VerKeyKES v)
deriveVerKeyKES SignKeyKES d
sk_0
SignKeyKES d
sk_1 <- forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m
-> MLockedSeed (SeedSizeKES v) -> m (SignKeyKES v)
genKeyKESWith MLockedAllocator m
allocator MLockedSeed (SeedSizeKES d)
r1
VerKeyKES d
vk_1 <- forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
SignKeyKES v -> m (VerKeyKES v)
deriveVerKeyKES SignKeyKES d
sk_1
forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
SignKeyKES v -> m ()
forgetSignKeyKES SignKeyKES d
sk_1
forall (m :: Type -> Type) (n :: Nat).
MonadST m =>
MLockedSeed n -> m ()
mlockedSeedFinalize MLockedSeed (SeedSizeKES d)
r0
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk_0 MLockedSeed (SeedSizeKES d)
r1 VerKeyKES d
vk_0 VerKeyKES d
vk_1
forgetSignKeyKESWith :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
MLockedAllocator m -> SignKeyKES (CompactSumKES h d) -> m ()
forgetSignKeyKESWith MLockedAllocator m
allocator (SignKeyCompactSumKES SignKeyKES d
sk_0 MLockedSeed (SeedSizeKES d)
r1 VerKeyKES d
_ VerKeyKES d
_) = do
forall v (m :: Type -> Type).
(KESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m -> SignKeyKES v -> m ()
forgetSignKeyKESWith MLockedAllocator m
allocator SignKeyKES d
sk_0
forall (m :: Type -> Type) (n :: Nat).
MonadST m =>
MLockedSeed n -> m ()
mlockedSeedFinalize MLockedSeed (SeedSizeKES d)
r1
instance
( KESAlgorithm (CompactSumKES h d)
, UnsoundKESAlgorithm d
) =>
UnsoundKESAlgorithm (CompactSumKES h d)
where
{-# NOINLINE rawSerialiseSignKeyKES #-}
rawSerialiseSignKeyKES :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
SignKeyKES (CompactSumKES h d) -> m ByteString
rawSerialiseSignKeyKES (SignKeyCompactSumKES SignKeyKES d
sk MLockedSeed (SeedSizeKES d)
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) = do
ByteString
ssk <- forall v (m :: Type -> Type).
(UnsoundKESAlgorithm v, MonadST m, MonadThrow m) =>
SignKeyKES v -> m ByteString
rawSerialiseSignKeyKES SignKeyKES d
sk
ByteString
sr1 <- forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadST m) =>
MLockedSizedBytes n -> m ByteString
mlsbToByteString forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (n :: Nat). MLockedSeed n -> MLockedSizedBytes n
mlockedSeedMLSB forall a b. (a -> b) -> a -> b
$ MLockedSeed (SeedSizeKES d)
r_1
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$
forall a. Monoid a => [a] -> a
mconcat
[ ByteString
ssk
, ByteString
sr1
, forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_0
, forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_1
]
{-# NOINLINE rawDeserialiseSignKeyKESWith #-}
rawDeserialiseSignKeyKESWith :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
MLockedAllocator m
-> ByteString -> m (Maybe (SignKeyKES (CompactSumKES h d)))
rawDeserialiseSignKeyKESWith MLockedAllocator m
allocator ByteString
b = forall (m :: Type -> Type) a. MaybeT m a -> m (Maybe a)
runMaybeT forall a b. (a -> b) -> a -> b
$ do
forall (f :: Type -> Type). Alternative f => Bool -> f ()
guard (ByteString -> Int
BS.length ByteString
b forall a. Eq a => a -> a -> Bool
== forall a b. (Integral a, Num b) => a -> b
fromIntegral Period
size_total)
SignKeyKES d
sk <- forall (m :: Type -> Type) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$ forall v (m :: Type -> Type).
(UnsoundKESAlgorithm v, MonadST m, MonadThrow m) =>
MLockedAllocator m -> ByteString -> m (Maybe (SignKeyKES v))
rawDeserialiseSignKeyKESWith MLockedAllocator m
allocator ByteString
b_sk
MLockedSizedBytes (SeedSizeKES d)
r <- forall (m :: Type -> Type) a. m (Maybe a) -> MaybeT m a
MaybeT forall a b. (a -> b) -> a -> b
$ forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadST m) =>
MLockedAllocator m -> ByteString -> m (Maybe (MLockedSizedBytes n))
mlsbFromByteStringCheckWith MLockedAllocator m
allocator ByteString
b_r
VerKeyKES d
vk_0 <- forall (m :: Type -> Type) a. m (Maybe a) -> MaybeT m a
MaybeT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk0
VerKeyKES d
vk_1 <- forall (m :: Type -> Type) a. m (Maybe a) -> MaybeT m a
MaybeT forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk1
forall (m :: Type -> Type) a. Monad m => a -> m a
return (forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk (forall (n :: Nat). MLockedSizedBytes n -> MLockedSeed n
MLockedSeed MLockedSizedBytes (SeedSizeKES d)
r) VerKeyKES d
vk_0 VerKeyKES d
vk_1)
where
b_sk :: ByteString
b_sk = Period -> Period -> ByteString -> ByteString
slice Period
off_sk Period
size_sk ByteString
b
b_r :: ByteString
b_r = Period -> Period -> ByteString -> ByteString
slice Period
off_r Period
size_r ByteString
b
b_vk0 :: ByteString
b_vk0 = Period -> Period -> ByteString -> ByteString
slice Period
off_vk0 Period
size_vk ByteString
b
b_vk1 :: ByteString
b_vk1 = Period -> Period -> ByteString -> ByteString
slice Period
off_vk1 Period
size_vk ByteString
b
size_sk :: Period
size_sk = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeSignKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_r :: Period
size_r = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
seedSizeKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_vk :: Period
size_vk = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeVerKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_total :: Period
size_total = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeSignKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy (CompactSumKES h d))
off_sk :: Period
off_sk = Period
0 :: Word
off_r :: Period
off_r = Period
size_sk
off_vk0 :: Period
off_vk0 = Period
off_r forall a. Num a => a -> a -> a
+ Period
size_r
off_vk1 :: Period
off_vk1 = Period
off_vk0 forall a. Num a => a -> a -> a
+ Period
size_vk
instance
(KESAlgorithm (CompactSumKES h d), OptimizedKESAlgorithm d, HashAlgorithm h) =>
OptimizedKESAlgorithm (CompactSumKES h d)
where
verifySigKES :: forall a.
(Signable (CompactSumKES h d) a, HasCallStack) =>
ContextKES (CompactSumKES h d)
-> Period -> a -> SigKES (CompactSumKES h d) -> Either String ()
verifySigKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a (SigCompactSumKES SigKES d
sigma VerKeyKES d
_) =
forall v a.
(OptimizedKESAlgorithm v, Signable v a, HasCallStack) =>
ContextKES v -> Period -> a -> SigKES v -> Either String ()
verifySigKES ContextKES (CompactSumKES h d)
ctxt Period
t' a
a SigKES d
sigma
where
_T :: Period
_T = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
t' :: Period
t'
| Period
t forall a. Ord a => a -> a -> Bool
< Period
_T = Period
t
| Bool
otherwise = Period
t forall a. Num a => a -> a -> a
- Period
_T
verKeyFromSigKES :: ContextKES (CompactSumKES h d)
-> Period
-> SigKES (CompactSumKES h d)
-> VerKeyKES (CompactSumKES h d)
verKeyFromSigKES ContextKES (CompactSumKES h d)
ctxt Period
t (SigCompactSumKES SigKES d
sigma VerKeyKES d
vk_other) =
forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES forall a b. (a -> b) -> a -> b
$ forall d h.
(KESAlgorithm d, HashAlgorithm h) =>
(VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
hashPairOfVKeys (VerKeyKES d
vk_0, VerKeyKES d
vk_1)
where
_T :: Period
_T = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
t' :: Period
t'
| Period
t forall a. Ord a => a -> a -> Bool
< Period
_T = Period
t
| Bool
otherwise = Period
t forall a. Num a => a -> a -> a
- Period
_T
(VerKeyKES d
vk_0, VerKeyKES d
vk_1)
| Period
t forall a. Ord a => a -> a -> Bool
< Period
_T = (forall v.
OptimizedKESAlgorithm v =>
ContextKES v -> Period -> SigKES v -> VerKeyKES v
verKeyFromSigKES ContextKES (CompactSumKES h d)
ctxt Period
t' SigKES d
sigma, VerKeyKES d
vk_other)
| Bool
otherwise = (VerKeyKES d
vk_other, forall v.
OptimizedKESAlgorithm v =>
ContextKES v -> Period -> SigKES v -> VerKeyKES v
verKeyFromSigKES ContextKES (CompactSumKES h d)
ctxt Period
t' SigKES d
sigma)
deriving instance HashAlgorithm h => Show (VerKeyKES (CompactSumKES h d))
deriving instance Eq (VerKeyKES (CompactSumKES h d))
deriving via
OnlyCheckWhnfNamed "SignKeyKES (CompactSumKES h d)" (SignKeyKES (CompactSumKES h d))
instance
NoThunks (SignKeyKES (CompactSumKES h d))
instance KESAlgorithm d => NoThunks (VerKeyKES (CompactSumKES h d))
instance
( OptimizedKESAlgorithm d
, SodiumHashAlgorithm h
, SizeHash h ~ SeedSizeKES d
, NoThunks (VerKeyKES (CompactSumKES h d))
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
ToCBOR (VerKeyKES (CompactSumKES h d))
where
toCBOR :: VerKeyKES (CompactSumKES h d) -> Encoding
toCBOR = forall v. KESAlgorithm v => VerKeyKES v -> Encoding
encodeVerKeyKES
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (VerKeyKES (CompactSumKES h d)) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_size = forall v. KESAlgorithm v => Proxy (VerKeyKES v) -> Size
encodedVerKeyKESSizeExpr
instance
( OptimizedKESAlgorithm d
, SodiumHashAlgorithm h
, SizeHash h ~ SeedSizeKES d
, NoThunks (VerKeyKES (CompactSumKES h d))
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
FromCBOR (VerKeyKES (CompactSumKES h d))
where
fromCBOR :: forall s. Decoder s (VerKeyKES (CompactSumKES h d))
fromCBOR = forall v s. KESAlgorithm v => Decoder s (VerKeyKES v)
decodeVerKeyKES
deriving instance KESAlgorithm d => Show (SigKES (CompactSumKES h d))
deriving instance KESAlgorithm d => Eq (SigKES (CompactSumKES h d))
instance KESAlgorithm d => NoThunks (SigKES (CompactSumKES h d))
instance
( OptimizedKESAlgorithm d
, SodiumHashAlgorithm h
, SizeHash h ~ SeedSizeKES d
, NoThunks (VerKeyKES (CompactSumKES h d))
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
ToCBOR (SigKES (CompactSumKES h d))
where
toCBOR :: SigKES (CompactSumKES h d) -> Encoding
toCBOR = forall v. KESAlgorithm v => SigKES v -> Encoding
encodeSigKES
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (SigKES (CompactSumKES h d)) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_size = forall v. KESAlgorithm v => Proxy (SigKES v) -> Size
encodedSigKESSizeExpr
instance
( OptimizedKESAlgorithm d
, SodiumHashAlgorithm h
, SizeHash h ~ SeedSizeKES d
, NoThunks (VerKeyKES (CompactSumKES h d))
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
FromCBOR (SigKES (CompactSumKES h d))
where
fromCBOR :: forall s. Decoder s (SigKES (CompactSumKES h d))
fromCBOR = forall v s. KESAlgorithm v => Decoder s (SigKES v)
decodeSigKES
instance
( KESAlgorithm (CompactSumKES h d)
, HashAlgorithm h
, UnsoundPureKESAlgorithm d
) =>
UnsoundPureKESAlgorithm (CompactSumKES h d)
where
data UnsoundPureSignKeyKES (CompactSumKES h d)
= UnsoundPureSignKeyCompactSumKES
!(UnsoundPureSignKeyKES d)
!Seed
!(VerKeyKES d)
!(VerKeyKES d)
deriving (forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall h d x.
Rep (UnsoundPureSignKeyKES (CompactSumKES h d)) x
-> UnsoundPureSignKeyKES (CompactSumKES h d)
forall h d x.
UnsoundPureSignKeyKES (CompactSumKES h d)
-> Rep (UnsoundPureSignKeyKES (CompactSumKES h d)) x
$cto :: forall h d x.
Rep (UnsoundPureSignKeyKES (CompactSumKES h d)) x
-> UnsoundPureSignKeyKES (CompactSumKES h d)
$cfrom :: forall h d x.
UnsoundPureSignKeyKES (CompactSumKES h d)
-> Rep (UnsoundPureSignKeyKES (CompactSumKES h d)) x
Generic)
unsoundPureSignKES :: forall a.
Signable (CompactSumKES h d) a =>
ContextKES (CompactSumKES h d)
-> Period
-> a
-> UnsoundPureSignKeyKES (CompactSumKES h d)
-> SigKES (CompactSumKES h d)
unsoundPureSignKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a (UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk Seed
_r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) =
forall h d. SigKES d -> VerKeyKES d -> SigKES (CompactSumKES h d)
SigCompactSumKES SigKES d
sigma VerKeyKES d
vk_other
where
(SigKES d
sigma, VerKeyKES d
vk_other)
| Period
t forall a. Ord a => a -> a -> Bool
< Period
_T = (forall v a.
(UnsoundPureKESAlgorithm v, Signable v a) =>
ContextKES v -> Period -> a -> UnsoundPureSignKeyKES v -> SigKES v
unsoundPureSignKES ContextKES (CompactSumKES h d)
ctxt Period
t a
a UnsoundPureSignKeyKES d
sk, VerKeyKES d
vk_1)
| Bool
otherwise = (forall v a.
(UnsoundPureKESAlgorithm v, Signable v a) =>
ContextKES v -> Period -> a -> UnsoundPureSignKeyKES v -> SigKES v
unsoundPureSignKES ContextKES (CompactSumKES h d)
ctxt (Period
t forall a. Num a => a -> a -> a
- Period
_T) a
a UnsoundPureSignKeyKES d
sk, VerKeyKES d
vk_0)
_T :: Period
_T = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
unsoundPureUpdateKES :: ContextKES (CompactSumKES h d)
-> UnsoundPureSignKeyKES (CompactSumKES h d)
-> Period
-> Maybe (UnsoundPureSignKeyKES (CompactSumKES h d))
unsoundPureUpdateKES ContextKES (CompactSumKES h d)
ctx (UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk Seed
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) Period
t
| Period
t forall a. Num a => a -> a -> a
+ Period
1 forall a. Ord a => a -> a -> Bool
< Period
_T = do
UnsoundPureSignKeyKES d
sk' <- forall v.
UnsoundPureKESAlgorithm v =>
ContextKES v
-> UnsoundPureSignKeyKES v
-> Period
-> Maybe (UnsoundPureSignKeyKES v)
unsoundPureUpdateKES ContextKES (CompactSumKES h d)
ctx UnsoundPureSignKeyKES d
sk Period
t
let r_1' :: Seed
r_1' = Seed
r_1
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
UnsoundPureSignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> UnsoundPureSignKeyKES (CompactSumKES h d)
UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk' Seed
r_1' VerKeyKES d
vk_0 VerKeyKES d
vk_1
| Period
t forall a. Num a => a -> a -> a
+ Period
1 forall a. Eq a => a -> a -> Bool
== Period
_T = do
let sk' :: UnsoundPureSignKeyKES d
sk' = forall v.
UnsoundPureKESAlgorithm v =>
Seed -> UnsoundPureSignKeyKES v
unsoundPureGenKeyKES Seed
r_1
let r_1' :: Seed
r_1' = ByteString -> Seed
mkSeedFromBytes (Int -> Word8 -> ByteString
BS.replicate (forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
seedSizeKES (forall {k} (t :: k). Proxy t
Proxy @d))) Word8
0)
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
UnsoundPureSignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> UnsoundPureSignKeyKES (CompactSumKES h d)
UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk' Seed
r_1' VerKeyKES d
vk_0 VerKeyKES d
vk_1
| Bool
otherwise = do
UnsoundPureSignKeyKES d
sk' <- forall v.
UnsoundPureKESAlgorithm v =>
ContextKES v
-> UnsoundPureSignKeyKES v
-> Period
-> Maybe (UnsoundPureSignKeyKES v)
unsoundPureUpdateKES ContextKES (CompactSumKES h d)
ctx UnsoundPureSignKeyKES d
sk (Period
t forall a. Num a => a -> a -> a
- Period
_T)
let r_1' :: Seed
r_1' = Seed
r_1
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
UnsoundPureSignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> UnsoundPureSignKeyKES (CompactSumKES h d)
UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk' Seed
r_1' VerKeyKES d
vk_0 VerKeyKES d
vk_1
where
_T :: Period
_T = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
totalPeriodsKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
unsoundPureGenKeyKES :: Seed -> UnsoundPureSignKeyKES (CompactSumKES h d)
unsoundPureGenKeyKES Seed
r =
let r0 :: Seed
r0 = ByteString -> Seed
mkSeedFromBytes forall a b. (a -> b) -> a -> b
$ forall h (proxy :: Type -> Type).
HashAlgorithm h =>
proxy h -> ByteString -> ByteString
digest (forall {k} (t :: k). Proxy t
Proxy @h) (Word8 -> ByteString -> ByteString
BS.cons Word8
1 forall a b. (a -> b) -> a -> b
$ Seed -> ByteString
getSeedBytes Seed
r)
r1 :: Seed
r1 = ByteString -> Seed
mkSeedFromBytes forall a b. (a -> b) -> a -> b
$ forall h (proxy :: Type -> Type).
HashAlgorithm h =>
proxy h -> ByteString -> ByteString
digest (forall {k} (t :: k). Proxy t
Proxy @h) (Word8 -> ByteString -> ByteString
BS.cons Word8
2 forall a b. (a -> b) -> a -> b
$ Seed -> ByteString
getSeedBytes Seed
r)
sk_0 :: UnsoundPureSignKeyKES d
sk_0 = forall v.
UnsoundPureKESAlgorithm v =>
Seed -> UnsoundPureSignKeyKES v
unsoundPureGenKeyKES Seed
r0
vk_0 :: VerKeyKES d
vk_0 = forall v.
UnsoundPureKESAlgorithm v =>
UnsoundPureSignKeyKES v -> VerKeyKES v
unsoundPureDeriveVerKeyKES UnsoundPureSignKeyKES d
sk_0
sk_1 :: UnsoundPureSignKeyKES d
sk_1 = forall v.
UnsoundPureKESAlgorithm v =>
Seed -> UnsoundPureSignKeyKES v
unsoundPureGenKeyKES Seed
r1
vk_1 :: VerKeyKES d
vk_1 = forall v.
UnsoundPureKESAlgorithm v =>
UnsoundPureSignKeyKES v -> VerKeyKES v
unsoundPureDeriveVerKeyKES UnsoundPureSignKeyKES d
sk_1
in forall h d.
UnsoundPureSignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> UnsoundPureSignKeyKES (CompactSumKES h d)
UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk_0 Seed
r1 VerKeyKES d
vk_0 VerKeyKES d
vk_1
unsoundPureDeriveVerKeyKES :: UnsoundPureSignKeyKES (CompactSumKES h d)
-> VerKeyKES (CompactSumKES h d)
unsoundPureDeriveVerKeyKES (UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
_ Seed
_ VerKeyKES d
vk_0 VerKeyKES d
vk_1) =
forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES (forall d h.
(KESAlgorithm d, HashAlgorithm h) =>
(VerKeyKES d, VerKeyKES d) -> Hash h (VerKeyKES d, VerKeyKES d)
hashPairOfVKeys (VerKeyKES d
vk_0, VerKeyKES d
vk_1))
unsoundPureSignKeyKESToSoundSignKeyKES :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
UnsoundPureSignKeyKES (CompactSumKES h d)
-> m (SignKeyKES (CompactSumKES h d))
unsoundPureSignKeyKESToSoundSignKeyKES (UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk Seed
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) =
forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> forall v (m :: Type -> Type).
(UnsoundPureKESAlgorithm v, MonadST m, MonadThrow m) =>
UnsoundPureSignKeyKES v -> m (SignKeyKES v)
unsoundPureSignKeyKESToSoundSignKeyKES UnsoundPureSignKeyKES d
sk
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> (forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap forall (n :: Nat). MLockedSizedBytes n -> MLockedSeed n
MLockedSeed forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (n :: Nat) (m :: Type -> Type).
(KnownNat n, MonadST m) =>
ByteString -> m (MLockedSizedBytes n)
mlsbFromByteString forall b c a. (b -> c) -> (a -> b) -> a -> c
. Seed -> ByteString
getSeedBytes forall a b. (a -> b) -> a -> b
$ Seed
r_1)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> forall (f :: Type -> Type) a. Applicative f => a -> f a
pure VerKeyKES d
vk_0
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> forall (f :: Type -> Type) a. Applicative f => a -> f a
pure VerKeyKES d
vk_1
rawSerialiseUnsoundPureSignKeyKES :: UnsoundPureSignKeyKES (CompactSumKES h d) -> ByteString
rawSerialiseUnsoundPureSignKeyKES (UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk Seed
r_1 VerKeyKES d
vk_0 VerKeyKES d
vk_1) =
let ssk :: ByteString
ssk = forall v.
UnsoundPureKESAlgorithm v =>
UnsoundPureSignKeyKES v -> ByteString
rawSerialiseUnsoundPureSignKeyKES UnsoundPureSignKeyKES d
sk
sr1 :: ByteString
sr1 = Seed -> ByteString
getSeedBytes Seed
r_1
in forall a. Monoid a => [a] -> a
mconcat
[ ByteString
ssk
, ByteString
sr1
, forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_0
, forall v. KESAlgorithm v => VerKeyKES v -> ByteString
rawSerialiseVerKeyKES VerKeyKES d
vk_1
]
rawDeserialiseUnsoundPureSignKeyKES :: ByteString -> Maybe (UnsoundPureSignKeyKES (CompactSumKES h d))
rawDeserialiseUnsoundPureSignKeyKES ByteString
b = do
forall (f :: Type -> Type). Alternative f => Bool -> f ()
guard (ByteString -> Int
BS.length ByteString
b forall a. Eq a => a -> a -> Bool
== forall a b. (Integral a, Num b) => a -> b
fromIntegral Period
size_total)
UnsoundPureSignKeyKES d
sk <- forall v.
UnsoundPureKESAlgorithm v =>
ByteString -> Maybe (UnsoundPureSignKeyKES v)
rawDeserialiseUnsoundPureSignKeyKES ByteString
b_sk
let r :: Seed
r = ByteString -> Seed
mkSeedFromBytes ByteString
b_r
VerKeyKES d
vk_0 <- forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk0
VerKeyKES d
vk_1 <- forall v. KESAlgorithm v => ByteString -> Maybe (VerKeyKES v)
rawDeserialiseVerKeyKES ByteString
b_vk1
forall (m :: Type -> Type) a. Monad m => a -> m a
return (forall h d.
UnsoundPureSignKeyKES d
-> Seed
-> VerKeyKES d
-> VerKeyKES d
-> UnsoundPureSignKeyKES (CompactSumKES h d)
UnsoundPureSignKeyCompactSumKES UnsoundPureSignKeyKES d
sk Seed
r VerKeyKES d
vk_0 VerKeyKES d
vk_1)
where
b_sk :: ByteString
b_sk = Period -> Period -> ByteString -> ByteString
slice Period
off_sk Period
size_sk ByteString
b
b_r :: ByteString
b_r = Period -> Period -> ByteString -> ByteString
slice Period
off_r Period
size_r ByteString
b
b_vk0 :: ByteString
b_vk0 = Period -> Period -> ByteString -> ByteString
slice Period
off_vk0 Period
size_vk ByteString
b
b_vk1 :: ByteString
b_vk1 = Period -> Period -> ByteString -> ByteString
slice Period
off_vk1 Period
size_vk ByteString
b
size_sk :: Period
size_sk = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeSignKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_r :: Period
size_r = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
seedSizeKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_vk :: Period
size_vk = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeVerKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy d)
size_total :: Period
size_total = forall v (proxy :: Type -> Type).
KESAlgorithm v =>
proxy v -> Period
sizeSignKeyKES (forall {k} (t :: k). Proxy t
Proxy :: Proxy (CompactSumKES h d))
off_sk :: Period
off_sk = Period
0 :: Word
off_r :: Period
off_r = Period
size_sk
off_vk0 :: Period
off_vk0 = Period
off_r forall a. Num a => a -> a -> a
+ Period
size_r
off_vk1 :: Period
off_vk1 = Period
off_vk0 forall a. Num a => a -> a -> a
+ Period
size_vk
deriving instance
(KESAlgorithm d, Show (UnsoundPureSignKeyKES d)) => Show (UnsoundPureSignKeyKES (CompactSumKES h d))
deriving instance
(KESAlgorithm d, Eq (UnsoundPureSignKeyKES d)) => Eq (UnsoundPureSignKeyKES (CompactSumKES h d))
instance
( SizeHash h ~ SeedSizeKES d
, OptimizedKESAlgorithm d
, UnsoundPureKESAlgorithm d
, SodiumHashAlgorithm h
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
ToCBOR (UnsoundPureSignKeyKES (CompactSumKES h d))
where
toCBOR :: UnsoundPureSignKeyKES (CompactSumKES h d) -> Encoding
toCBOR = forall v.
UnsoundPureKESAlgorithm v =>
UnsoundPureSignKeyKES v -> Encoding
encodeUnsoundPureSignKeyKES
encodedSizeExpr :: (forall t. ToCBOR t => Proxy t -> Size)
-> Proxy (UnsoundPureSignKeyKES (CompactSumKES h d)) -> Size
encodedSizeExpr forall t. ToCBOR t => Proxy t -> Size
_size Proxy (UnsoundPureSignKeyKES (CompactSumKES h d))
_skProxy = forall v. KESAlgorithm v => Proxy (SignKeyKES v) -> Size
encodedSignKeyKESSizeExpr (forall {k} (t :: k). Proxy t
Proxy :: Proxy (SignKeyKES (CompactSumKES h d)))
instance
( SizeHash h ~ SeedSizeKES d
, OptimizedKESAlgorithm d
, UnsoundPureKESAlgorithm d
, SodiumHashAlgorithm h
, KnownNat (SizeVerKeyKES (CompactSumKES h d))
, KnownNat (SizeSignKeyKES (CompactSumKES h d))
, KnownNat (SizeSigKES (CompactSumKES h d))
) =>
FromCBOR (UnsoundPureSignKeyKES (CompactSumKES h d))
where
fromCBOR :: forall s. Decoder s (UnsoundPureSignKeyKES (CompactSumKES h d))
fromCBOR = forall v s.
UnsoundPureKESAlgorithm v =>
Decoder s (UnsoundPureSignKeyKES v)
decodeUnsoundPureSignKeyKES
instance
(NoThunks (UnsoundPureSignKeyKES d), KESAlgorithm d) =>
NoThunks (UnsoundPureSignKeyKES (CompactSumKES h d))
instance
( DirectSerialise (SignKeyKES d)
, DirectSerialise (VerKeyKES d)
, KESAlgorithm d
) =>
DirectSerialise (SignKeyKES (CompactSumKES h d))
where
directSerialise :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ())
-> SignKeyKES (CompactSumKES h d) -> m ()
directSerialise Ptr CChar -> CSize -> m ()
push (SignKeyCompactSumKES SignKeyKES d
sk MLockedSeed (SeedSizeKES d)
r VerKeyKES d
vk0 VerKeyKES d
vk1) = do
forall a (m :: Type -> Type).
(DirectSerialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> a -> m ()
directSerialise Ptr CChar -> CSize -> m ()
push SignKeyKES d
sk
forall a (m :: Type -> Type).
(DirectSerialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> a -> m ()
directSerialise Ptr CChar -> CSize -> m ()
push MLockedSeed (SeedSizeKES d)
r
forall a (m :: Type -> Type).
(DirectSerialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> a -> m ()
directSerialise Ptr CChar -> CSize -> m ()
push VerKeyKES d
vk0
forall a (m :: Type -> Type).
(DirectSerialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> a -> m ()
directSerialise Ptr CChar -> CSize -> m ()
push VerKeyKES d
vk1
instance
( DirectDeserialise (SignKeyKES d)
, DirectDeserialise (VerKeyKES d)
, KESAlgorithm d
) =>
DirectDeserialise (SignKeyKES (CompactSumKES h d))
where
directDeserialise :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> m (SignKeyKES (CompactSumKES h d))
directDeserialise Ptr CChar -> CSize -> m ()
pull = do
SignKeyKES d
sk <- forall a (m :: Type -> Type).
(DirectDeserialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> m a
directDeserialise Ptr CChar -> CSize -> m ()
pull
MLockedSeed (SeedSizeKES d)
r <- forall a (m :: Type -> Type).
(DirectDeserialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> m a
directDeserialise Ptr CChar -> CSize -> m ()
pull
VerKeyKES d
vk0 <- forall a (m :: Type -> Type).
(DirectDeserialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> m a
directDeserialise Ptr CChar -> CSize -> m ()
pull
VerKeyKES d
vk1 <- forall a (m :: Type -> Type).
(DirectDeserialise a, MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> m a
directDeserialise Ptr CChar -> CSize -> m ()
pull
forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
SignKeyKES d
-> MLockedSeed (SeedSizeKES d)
-> VerKeyKES d
-> VerKeyKES d
-> SignKeyKES (CompactSumKES h d)
SignKeyCompactSumKES SignKeyKES d
sk MLockedSeed (SeedSizeKES d)
r VerKeyKES d
vk0 VerKeyKES d
vk1
instance DirectSerialise (VerKeyKES (CompactSumKES h d)) where
directSerialise :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ())
-> VerKeyKES (CompactSumKES h d) -> m ()
directSerialise Ptr CChar -> CSize -> m ()
push (VerKeyCompactSumKES Hash h (VerKeyKES d, VerKeyKES d)
h) =
forall (m :: Type -> Type) a.
(MonadThrow m, MonadST m) =>
ByteString -> (CStringLen -> m a) -> m a
unpackByteStringCStringLen (forall h a. Hash h a -> ByteString
hashToBytes Hash h (VerKeyKES d, VerKeyKES d)
h) forall a b. (a -> b) -> a -> b
$ \(Ptr CChar
ptr, Int
len) ->
Ptr CChar -> CSize -> m ()
push (forall a b. Ptr a -> Ptr b
castPtr Ptr CChar
ptr) (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
len)
instance
HashAlgorithm h =>
DirectDeserialise (VerKeyKES (CompactSumKES h d))
where
directDeserialise :: forall (m :: Type -> Type).
(MonadST m, MonadThrow m) =>
(Ptr CChar -> CSize -> m ()) -> m (VerKeyKES (CompactSumKES h d))
directDeserialise Ptr CChar -> CSize -> m ()
pull = do
let len :: Num a => a
len :: forall a. Num a => a
len = forall a b. (Integral a, Num b) => a -> b
fromIntegral forall a b. (a -> b) -> a -> b
$ forall h (proxy :: Type -> Type).
HashAlgorithm h =>
proxy h -> Period
sizeHash (forall {k} (t :: k). Proxy t
Proxy @h)
ForeignPtr m Word8
fptr <- forall (m :: Type -> Type) a.
MonadST m =>
Int -> m (ForeignPtr m a)
mallocForeignPtrBytes forall a. Num a => a
len
forall (m :: Type -> Type) a b.
MonadST m =>
ForeignPtr m a -> (Ptr a -> m b) -> m b
withForeignPtr ForeignPtr m Word8
fptr forall a b. (a -> b) -> a -> b
$ \Ptr Word8
ptr -> do
Ptr CChar -> CSize -> m ()
pull (forall a b. Ptr a -> Ptr b
castPtr Ptr Word8
ptr) forall a. Num a => a
len
let bs :: ByteString
bs = ForeignPtr Word8 -> Int -> Int -> ByteString
BS.fromForeignPtr (forall (m :: Type -> Type) a. ForeignPtr m a -> ForeignPtr a
unsafeRawForeignPtr ForeignPtr m Word8
fptr) Int
0 forall a. Num a => a
len
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (forall a. HasCallStack => String -> a
error String
"Invalid hash") forall (m :: Type -> Type) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! forall h d.
Hash h (VerKeyKES d, VerKeyKES d) -> VerKeyKES (CompactSumKES h d)
VerKeyCompactSumKES forall (m :: Type -> Type) a b. Monad m => (a -> b) -> m a -> m b
<$!> forall h a. HashAlgorithm h => ByteString -> Maybe (Hash h a)
hashFromBytes ByteString
bs