| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
PlutusCore.Examples.Data.Vec
Description
In this module we define Church-encoded type-level natural numbers, Church-encoded vectors and Scott-encoded vectors.
See docsfomegagadtsScottVec.agda for how Scott-encoded vectors work.
Synopsis
- natK :: Kind ()
- getEta :: Type TyName uni () -> Quote (Type TyName uni ())
- zeroT :: Type TyName uni ()
- succT :: Type TyName uni ()
- plusT :: Type TyName uni ()
- getStepFun :: TyName -> Type TyName uni () -> TyName -> Quote (Type TyName uni ())
- churchVec :: Type TyName uni ()
- churchNil :: Term TyName Name uni fun ()
- churchCons :: Term TyName Name uni fun ()
- churchConcat :: Term TyName Name uni fun ()
- scottVecF :: Type TyName uni ()
- scottVec :: Type TyName uni ()
- scottNil :: Term TyName Name uni fun ()
- scottCons :: Term TyName Name uni fun ()
- scottHead :: uni `Includes` () => Term TyName Name uni fun ()
- scottSumHeadsOr0 :: (uni `Includes` Integer, uni `Includes` ()) => Term TyName Name uni DefaultFun ()
Documentation
getEta :: Type TyName uni () -> Quote (Type TyName uni ()) Source #
getEta n = \(f :: * -> *) (z :: *) -> n f z
plusT :: Type TyName uni () Source #
plusT = \(n : natK) (m : natK) (f :: * -> *) (z :: *) -> n f (m f z)
getStepFun :: TyName -> Type TyName uni () -> TyName -> Quote (Type TyName uni ()) Source #
stepFun a r1 r2 = all (p :: natK). a -> r1 p -> r2 (succT p)
churchVec :: Type TyName uni () Source #
churchVec =
\(a :: *) (n :: natK) ->
all (r :: natK -> *). (all (p :: natK). a -> r p -> r (succT p)) -> r zeroT -> r nchurchNil :: Term TyName Name uni fun () Source #
churchNil =
/\(a :: *) ->
/\(r :: natK -> *) -> \(f : all (p :: natK). a -> r p -> r (succT p)) (z : r zeroT) ->
zchurchCons :: Term TyName Name uni fun () Source #
churchCons =
/\(a :: *) (n :: natK) -> \(x : a) (xs : churchVec a n) ->
/\(r :: natK -> *) -> \(f : all (p :: natK). a -> r p -> r (succT p)) (z : r zeroT) ->
f {n} x (xs {r} f z)churchConcat :: Term TyName Name uni fun () Source #
churchConcat =
/\(a :: *) (n :: natK) (m :: natK) -> \(xs : churchVec a n) (ys : churchVec a m) ->
/\(r :: natK -> *) -> \(f : all (p :: natK). a -> r p -> r (succT p)) (z : r zeroT) ->
xs
{\(p :: natK) -> r (plusT p m)}
(/\(p :: natK) -> f {plusT p m})
(ys {r} f z)scottVecF :: Type TyName uni () Source #
scottVecF =
\(a :: *) (rec :: natK -> *) (n :: natK) ->
all (r :: natK -> *). (all (p :: natK). a -> rec p -> r (succT p)) -> r zeroT -> r nscottNil :: Term TyName Name uni fun () Source #
scottNil =
/\(a :: *) ->
iwrap (scottVecF a) zeroT
(/\(r :: natK -> *) ->
\(f : all (p :: natK). a -> scottVec a p -> r (succT p)) (z : r zeroT) ->
z)scottCons :: Term TyName Name uni fun () Source #
scottCons =
/\(a :: *) (n :: natK) -> \(x : a) (xs : scottVec a n) ->
iwrap (scottVecF a) (succT n)
(/\(r :: natK -> *) ->
\(f : all (p :: natK). a -> scottVec a p -> r (succT p)) (z : r zeroT) ->
f {n} x xs)scottHead :: uni `Includes` () => Term TyName Name uni fun () Source #
scottHead =
/\(a :: *) (n :: natK) -> (xs : scottVec a (suc n)) ->
unwrap
xs
{\(p :: natK) -> p (\(z :: *) -> a) unit}
(/\(p :: natK) (x : a) (xs' : scottVec a p) -> x)
unitvalscottSumHeadsOr0 :: (uni `Includes` Integer, uni `Includes` ()) => Term TyName Name uni DefaultFun () Source #
scottSumHeadsOr0 =
/\(n :: natK) -> (xs ys : scottVec integer n) ->
unwrap
xs
{\(p :: natK) -> (scottVec Integer n -> scottVec integer p) -> integer}
(/\(p :: natK) (x : integer) (xs' : scottVec integer p)
\(coe : scottVec Integer n -> scottVec integer (suc p)) ->
x + scottHead {integer} {p} (coe ys))
(\(coe : scottVec Integer n -> scottVec integer zero) -> 0)
(/\(xs' :: scottVec Integer n) -> xs')