
Contents
1 Introduction 2

2 Epochs & Consensus 2

3 Transactions & Blocks 3

4 Ledger 4

5 Key properties 5

1

1 Introduction
This is a small example of a ledger specification for Midnight. It only assumes that we know
how to hash some types and provides a step function for the ledger together with a proof of a
non-trivial property.

2 Epochs & Consensus
We define the number of slots in an epoch and a conversion function from slots to epochs here,
as well as a structure to refer to certain points in the chain.

record Point : Type where
field slot : Maybe ℕ

blockHash : Hash

slotsInEpoch : ℕ
slotsInEpoch = 50

epochOf : Maybe ℕ → Maybe ℕ
epochOf nothing = nothing
epochOf (just s) = just (s / slotsInEpoch)

Figure 1: Point- and epoch-related definitions

2

3 Transactions & Blocks
Transactions can increment or decrement a counter that is stored in the ledger, and blocks
consist of a list of transactions and a header, which contains some meta-information about the
block. We also use the accessor functions of the headers transitively, to access fields in the
header given the body.

data Tx : Type where
inc : Tx
dec : Tx

txDelta : Tx → ℤ
txDelta inc = 1ℤ
txDelta dec = -1ℤ

Figure 2: Transactions

3

record Header : Type where
field slotNo : ℕ

blockNo : ℕ
blockHash : Hash
prev : ℕ
nodeId : ℕ

record Block : Type where
field header : Header

body : List Tx

open Header header public

blockPoint : Block → Point
blockPoint b = record { slot = just slotNo ; blockHash = blockHash }
where open Block b

computeBlockHash : Block → Hash
computeBlockHash b = hash (slotNo , blockNo , prev , body)
where open Block b

addBlockHash : Block → Block
addBlockHash b = record b
{ header = record header { blockHash = computeBlockHash b } }
where open Block b

Figure 3: Blocks and functions related to them

4 Ledger
The ledger state consists of a pointer to the previous block as well as a counter and two snapshots.
Ticking a ledger state means to roll over the snapshots.

The ledger transition system updates the tip to point to the most recent applied block, and
increments/decrements the counter according to the transactions. We also want to check some
non-trivial conditions, so we require the change to the counter to be non-zero and that the hash
in the header is correct.

We can prove that this relation is a partial function and the proof gives us a step function.
As an example we also provide a function that does the same computation explicitly.

4

record LedgerState : Type where
field tip : Point

count : ℤ
snapshot1 snapshot2 : ℤ

tickLedgerState : ℕ → LedgerState → LedgerState
tickLedgerState newSlot st = if isNewEpoch
then record st { snapshot1 = count st ; snapshot2 = snapshot1 st }
else st
where isNewEpoch = epochOf (Point.slot (tip st)) <ᵇ epochOf (just newSlot)

Figure 4: Ledger state and its tick function

data _⊢_⇀⦇_,LEDGER⦈_ : ⊤ → LedgerState → Block → LedgerState → Type where
LEDGER-inductive : ∀ {Γ} {s} {b} →
let open Block b

acc = ∑ˡ[x ← body] txDelta x
s' = tickLedgerState slotNo s

in ∙ acc ≢ 0ℤ ∙ computeBlockHash b ≡ blockHash
────────────────────────────────
Γ ⊢ s ⇀⦇ b ,LEDGER⦈
record s' { tip = blockPoint b ; count = count s + acc }

Figure 5: The LEDGER transition system

5 Key properties
This is Agda, so we can prove some properties. Since we check very few things, and just repeating
properties that we do check isn’t interesting, here’s the only non-trivial property that I could
think of: That the counter in the ledger state does change.

We present three proofs here, one using the STS, one using the step function generated
from the STS, and one using the applyBlockTo function to show why using the STS is more
convenient for proofs: Instead of tracing the function control flow to extract properties, we can
simply pattern-match for them. After we obtained fact that the sum of changes induced by
transactions is non-zero, the proofs are identical.

5

LEDGER-step : ⊤ → LedgerState → Block → ComputationResult ⊤ LedgerState
LEDGER-step = compute

applyBlockTo : Block → LedgerState → Maybe LedgerState
applyBlockTo b st = let acc = ∑ˡ[x ← Block.body b] txDelta x in
ifᵈ acc ≢ 0ℤ ∧ computeBlockHash b ≡ Block.blockHash b
then just record st { tip = blockPoint b ; count = count st + acc }
else nothing

lemma : ∀ {x y} → y ≢ 0ℤ → x ≢ x + y
lemma y≢0 eq = y≢0 (identityʳ-unique _ _ (sym eq))

LEDGER-property₁ : _ ⊢ s ⇀⦇ b ,LEDGER⦈ s' → count s ≢ count s'
LEDGER-property₁ (LEDGER-inductive⋯ acc≢0 _) = lemma acc≢0

LEDGER-property₂ : LEDGER-step _ s b ≡ success s' → count s ≢ count s'
LEDGER-property₂ {s} {b} eq
= LEDGER-property₁
$ Equivalence.to (≡-success⇔STS {s = s} {sig = b}) eq

LEDGER-property₃ : applyBlockTo b s ≡ just s' → count s ≢ count s'
LEDGER-property₃ {b = b} h with
(∑ˡ[x ← Block.body b] txDelta x) ≟ 0ℤ | computeBlockHash b ≟ Block.blockHash b | h

... | no acc≢0 | yes _ | refl = lemma acc≢0

... | no _ | no _ | ()

... | yes _ | _ | ()

Figure 6: Three proofs that the counter doesn’t stay constant

6

	Introduction
	Epochs & Consensus
	Transactions & Blocks
	Ledger
	Key properties

