
Contents
1 Introduction 3

1.1 A Note on Agda . 3
1.2 Separation of Concerns . 3
1.3 Reflexive-transitive Closure . 4
1.4 Computational . 4
1.5 Sets & Maps . 5
1.6 Propositions as Types, Properties and Relations 5
1.7 Superscripts and Other Special Notations . 5

2 Notation 7

3 Cryptographic Primitives 8

4 Base Types 9

5 Token Algebras 10

6 Addresses 11

7 Scripts 13

8 Protocol Parameters 14

9 Governance Actions 18
9.1 Hash Protection . 19
9.2 Votes and Proposals . 20

10 Transactions 22

11 UTxO 25
11.1 Accounting . 25
11.2 Witnessing . 31
11.3 Plutus script context . 32

12 Governance 33

13 Certificates 37
13.1 Removal of Pointer Addresses, Genesis Delegations and MIR Certificates 37
13.2 Explicit Deposits . 38
13.3 Delegation . 38
13.4 Governance Certificate Rules . 39

14 Ledger State Transition 43

15 Enactment 45

16 Ratification 48
16.1 Ratification Requirements . 48
16.2 Protocol Parameters and Governance Actions . 48
16.3 Ratification Restrictions . 49

17 Epoch Boundary 56

1

18 Blockchain Layer 61

19 Properties 62
19.1 UTxO . 62

A Agda Essentials 63
A.1 Record Types . 63

B Bootstrapping EnactState 63

C Bootstrapping the Governance System 64

2

1 Introduction
Repository: https://github.com/IntersectMBO/formal-ledger-specifications

This is the work-in-progress specification of the Cardano ledger. The current status of each
individual era is described in Table 1.

Era Figures Prose Cleanup
Shelley Partial Partial Not started
Shelley-MA Partial Partial Not started
Alonzo Partial Partial Not started
Babbage Not started Not started Not started
Conway [2] Complete Partial Partial

Table 1: Specification progress

1.1 A Note on Agda
This specification is written using the Agda programming language and proof assistant [1]. We
have spent a lot of time on making this document readable for people unfamiliar with Agda
(or other proof assistants, functional programming languages, etc.). However, by the nature
of working in a formal language we have to play by its rules, meaning that some instances of
uncommon notation are very difficult or impossible to avoid. Some are explained in Section 2,
but there is no guarantee that this section is complete. Anyone who is confused by the meaning
of an expression, please feel free to open an issue in our repository with the ‘notation’ label.

1.2 Separation of Concerns
The Cardano Node consists of three pieces:

• Networking layer, which deals with sending messages across the internet;

• Consensus layer, which establishes a common order of valid blocks;

• Ledger layer, which decides whether a sequence of blocks is valid.

Because of this separation, the ledger gets to be a state machine:

𝑠 𝑏−→
𝑋

𝑠′

More generally, we will consider state machines with an environment:

Γ ⊢ 𝑠 𝑏−→
𝑋

𝑠′

These are modelled as 4-ary relations between the environment Γ, an initial state 𝑠, a signal
𝑏 and a final state 𝑠′. The ledger consists of 25-ish (depending on the version) such relations
that depend on each other, forming a directed graph that is almost a tree. Thus each such
relation represents the transition rule of the state machine; 𝑋 is simply a placeholder for the
name of the transition rule.

3

https://github.com/IntersectMBO/formal-ledger-specifications
https://github.com/input-output-hk/formal-ledger-specifications/issues

1.3 Reflexive-transitive Closure
Some STS (state transition system) relations need to be applied as many times as they can to
arrive at a final state. Since we use this pattern multiple times, we define a closure operation
which takes a STS relation and applies it as many times as possible.

The closure _⊢_⇀⟦_⟧*_of a relation _⊢_⇀⟦_⟧_is defined in Figure 1. In the remainder of the
text, the closure operation is called ReflexiveTransitiveClosure.

Closure type

⊢⇀⟦_⟧*_ : C → S → List Sig → S → Type

Closure rules

RTC-base :
Γ ⊢ s ⇀⟦ [] ⟧* s

RTC-ind :
∙ Γ ⊢ s ⇀⟦ sig ⟧ s'
∙ Γ ⊢ s' ⇀⟦ sigs ⟧* s''
───────────────────────────────────────
Γ ⊢ s ⇀⟦ sig ∷ sigs ⟧* s''

Figure 1: Reflexive transitive closure

1.4 Computational
Since all such state machines need to be evaluated by the nodes and all nodes should compute
the same states, the relations specified by them should be computable by functions. This can be
captured by the definition in Figure 2 which is parametrized over the state transition relation.

record Computational (_⊢_⇀⦇_,X⦈_ : C → S → Sig → S → Type) : Type where
compute : C → S → Sig → Maybe S
≡-just⇔STS : compute Γ s b ≡ just s' ⇔ Γ ⊢ s ⇀⦇ b ,X⦈ s'

nothing⇒∀¬STS : compute Γ s b ≡ nothing → ∀ s' → ¬ Γ ⊢ s ⇀⦇ b ,X⦈ s'

Figure 2: Computational relations

Unpacking this, we have a compute function that computes a final state from a given envi-
ronment, state and signal. The second piece is correctness: compute succeeds with some final
state if and only if that final state is in relation to the inputs.

This has two further implications:

• Since compute is a function, the state transition relation is necessarily a (partial) function;
i.e., there is at most one possible final state for each input data. Otherwise, we could
prove that compute could evaluates to two different states on the same inputs, which is
impossible since it is a function.

• The actual definition of compute is irrelevant—any two implementations of compute have to
produce the same result on any input. This is because we can simply chain the equivalences
for two different compute functions together.

4

What this all means in the end is that if we give a Computational instance for every relation
defined in the ledger, we also have an executable version of the rules which is guaranteed to be
correct. This is indeed something we have done, and the same source code that generates this
document also generates a Haskell library that lets anyone run this code.

1.5 Sets & Maps
The ledger heavily uses set theory. For various reasons it was necessary to implement our own
set theory (there will be a paper on this some time in the future). Crucially, the set theory
is completely abstract (in a technical sense—Agda has an abstract keyword) meaning that
implementation details of the set theory are irrelevant. Additionally, all sets in this specification
are finite.

We use this set theory to define maps as seen below, which are used in many places. We
usually think of maps as partial functions (i.e., functions not necessarily defined everywhere—
equivalently, ”left-unique” relations) and we use the harpoon arrow ⇀ to distinguish such maps
from standard Agda functions which use →. The figure below also gives notation for the powerset
operation, ℙ, used to form a type of sets with elements in a given type, as well as the subset
relation and the equality relation for sets.

⊆ : {A : Type} → ℙ A → ℙ A → Type
X ⊆ Y = ∀ {x} → x ∈ X → x ∈ Y

≡ᵉ : {A : Type} → ℙ A → ℙ A → Type
X ≡ᵉ Y = X ⊆ Y × Y ⊆ X

Rel : Type → Type → Type
Rel A B = ℙ (A × B)

left-unique : {A B : Type} → Rel A B → Type
left-unique R = ∀ {a b b'} → (a , b) ∈ R → (a , b') ∈ R → b ≡ b'

⇀ : Type → Type → Type
A ⇀ B = r ∈ Rel A B ﹐ left-unique r

1.6 Propositions as Types, Properties and Relations
In type theory we represent propositions as types and proofs of a proposition as elements of
the corresponding type. A unary predicate is a function that takes each x (of some type A) and
returns a proposition P(x). Thus, a predicate is a function of type A → Type. A binary relation
R between A and B is a function that takes a pair of values x and y and returns a proposition
asserting that the relation R holds between x and y. Thus, such a relation is a function of type
A × B → Type or A → B → Type.

1.7 Superscripts and Other Special Notations
In the current version of this specification, superscript letters are heavily used for things such
as disambiguations or type conversions. These are essentially meaningless, only present for
technical reasons and can safely be ignored. However there are the two exceptions:

• ∪ˡ for left-biased union

5

• ᶜ in the context of set restrictions, where it indicates the complement

Also, non-letter superscripts do carry meaning.1
Finally, there are some ? and ¿ operations. These relate to decision procedures and can also

safely be ignored.2

1At some point in the future we hope to be able to remove all those non-essential superscripts. Since we prefer
doing this by changing the Agda source code instead of via hiding them in this document, this is a non-trivial
problem that will take some time to address.

2We plan on refactoring the code so that these special symbols will also disappear from this document.

6

2 Notation
This section introduces some of the notation we use in this document and in our Agda formal-
ization.

Propositions, sets and types. In this document the abstract notions of “set” and “type” are
essentially the same, despite having different formal definitions in our Agda code. We
represent sets as a special type, which we denote by Set A, for A an arbitrary type. (See
Section 1.5 for details and [4, Chapter 19] for background.) Agda denotes the primitive
notion of type by Set. To avoid confusion, throughout this document and in our Agda
code we call this primitive Type, reserving the name Set for our set type. All of our sets
are finite, and when we need to convert a list l to its set of elements, we write fromList l.

Lists We use the notation a ∷ as for the list with head a and tail as; [] denotes the empty list,
and l ∷ʳ x appends the element x to the end of the list l.

Sums and products. The sum (or disjoint union, coproduct, etc.) of A and B is denoted by
A ⊎ B, and their product is denoted by A × B. The projection functions from products are
denoted proj₁ and proj₂, and the injections are denoted inj₁ and inj₂ respectively. The
properties whether an element of a coproduct is in the left or right component are called
isInj₁ and isInj₂.

Addition of map values. The expression ∑[x ← m] f x denotes the sum of the values obtained
by applying the function f to the values of the map m.

Record types are explained in Appendix A.

Postfix projections. Projections can be written using postfix notation. For example, we may
write x .proj₁ instead of proj₁ x.

Restriction, corestriction and complements. The restriction of a function or map f to
some domain A is denoted by f | A, and the restriction to the complement of A is written
f | A ᶜ. Corestriction or range restriction is denoted similarly, except that | is replaced by
∣^.

Inverse image. The expression m ⁻¹ B denotes the inverse image of the set B under the map m.

Left-biased union. For maps m and m', we write m ∪ˡ m' for their left-biased union. This means
that key-value pairs in m are guaranteed to be in the union, while key-value pairs in m' will
be in the union if and only if the keys don’t collide.

Map addition. For maps m and m', we write m ∪⁺ m' for their union, where keys that appear
in both maps have their corresponding values added.

Mapping a partial function. A partial function is a function on A which may not be defined
for all elements of A. We denote such a function by f : A ⇀ B. If we happen to know that
the function is total (defined for all elements of A), then we write f : A → B. The mapPartial
operation takes such a function f and a set S of elements of A and applies f to the elements
of S at which it is defined; the result is the set {f x ∣ x ∈ S and f is defined at x}.

The Maybe type represents an optional value and can either be just x (indicating the presence
of a value, x) or nothing (indicating the absence of a value). If x has type X, then just x
has type Maybe X.

The unit type ⊤ has a single inhabitant tt and may be thought of as a type that carries no
information; it is useful for signifying the completion of an action, the presence of a trivial
value, a trivially satisfied requirement, etc.

7

3 Cryptographic Primitives
We rely on a public key signing scheme for verification of spending.

Types & functions

SKey VKey Sig Ser : Type
isKeyPair : SKey → VKey → Type
isSigned : VKey → Ser → Sig → Type
sign : SKey → Ser → Sig

KeyPair = Σ[sk ∈ SKey] Σ[vk ∈ VKey] isKeyPair sk vk

Property of signatures

((sk , vk , _) : KeyPair) (d : Ser) (σ : Sig) → sign sk d ≡ σ → isSigned vk d σ

Figure 3: Definitions for the public key signature scheme

8

4 Base Types

Coin = ℕ
Slot = ℕ
Epoch = ℕ

Figure 4: Some basic types used in many places in the ledger

9

5 Token Algebras

Abstract types

PolicyId
Derived types
record TokenAlgebra : Type₁ where
Value : Set
⦃ Value-CommutativeMonoid ⦄ : CommutativeMonoid 0ℓ 0ℓ Value

coin : Value → Coin
inject : Coin → Value
policies : Value → ℙ PolicyId
size : Value → MemoryEstimate
≤ᵗ : Value → Value → Type
AssetName : Set
specialAsset : AssetName
property : coin ∘ inject ≗ id -- FIXME: rename!
coinIsMonoidHomomorphism : IsMonoidHomomorphism coin

Helper functions
sumᵛ : List Value → Value
sumᵛ [] = inject 0
sumᵛ (x ∷ l) = x + sumᵛ l

Figure 5: Token algebras, used for multi-assets

10

6 Addresses
We define credentials and various types of addresses here. A credential contains a hash, either
of a verifying (public) key (isVKey) or of a script (isScript).

N.B. in the Shelley era the type of the stake field of the BaseAddr record was Credential; to
specify an address with no stake, we would use an “enterprise” address. In contrast, the type of
stake in the Conway era is Maybe Credential, so we can now use BaseAddr to specify an address
with no stake by setting stake to nothing.

11

Abstract types

Network
KeyHash
ScriptHash

Derived types
data Credential : Type where
KeyHashObj : KeyHash → Credential
ScriptObj : ScriptHash → Credential

record BaseAddr : Type where
field net : Network

pay : Credential
stake : Maybe Credential

record BootstrapAddr : Type where
field net : Network

pay : Credential
attrsSize : ℕ

record RwdAddr : Type where
field net : Network

stake : Credential

VKeyBaseAddr = Σ[addr ∈ BaseAddr] isVKey (addr .pay)
VKeyBootstrapAddr = Σ[addr ∈ BootstrapAddr] isVKey (addr .pay)
ScriptBaseAddr = Σ[addr ∈ BaseAddr] isScript (addr .pay)
ScriptBootstrapAddr = Σ[addr ∈ BootstrapAddr] isScript (addr .pay)

Addr = BaseAddr ⊎ BootstrapAddr
VKeyAddr = VKeyBaseAddr ⊎ VKeyBootstrapAddr
ScriptAddr = ScriptBaseAddr ⊎ ScriptBootstrapAddr

Helper functions
payCred : Addr → Credential
stakeCred : Addr → Maybe Credential
netId : Addr → Network
isVKeyAddr : Addr → Type
isScriptAddr : Addr → Type

isVKeyAddr = isVKey ∘ payCred
isScriptAddr = isScript ∘ payCred
isScriptRwdAddr = isScript ∘ RwdAddr.stake

Figure 6: Definitions used in Addresses

12

7 Scripts
We define Timelock scripts here. They can verify the presence of keys and whether a transaction
happens in a certain slot interval. These scripts are executed as part of the regular witnessing.

data Timelock : Type where
RequireAllOf : List Timelock → Timelock
RequireAnyOf : List Timelock → Timelock
RequireMOf : ℕ → List Timelock → Timelock
RequireSig : KeyHash → Timelock
RequireTimeStart : Slot → Timelock
RequireTimeExpire : Slot → Timelock

evalTimelock (khs : ℙ KeyHash) (I : Maybe Slot × Maybe Slot) : Timelock → Type where
evalAll : All (evalTimelock khs I) ss

→ (evalTimelock khs I) (RequireAllOf ss)
evalAny : Any (evalTimelock khs I) ss

→ (evalTimelock khs I) (RequireAnyOf ss)
evalMOf : MOf m (evalTimelock khs I) ss

→ (evalTimelock khs I) (RequireMOf m ss)
evalSig : x ∈ khs

→ (evalTimelock khs I) (RequireSig x)
evalTSt : M.Any (a ≤_) (I .proj₁)

→ (evalTimelock khs I) (RequireTimeStart a)
evalTEx : M.Any (_≤ a) (I .proj₂)

→ (evalTimelock khs I) (RequireTimeExpire a)

Figure 7: Timelock scripts and their evaluation

13

8 Protocol Parameters
This section defines the adjustable protocol parameters of the Cardano ledger. These parameters
are used in block validation and can affect various features of the system, such as minimum fees,
maximum and minimum sizes of certain components, and more.

The Acnt record has two fields, treasury and reserves, so the acnt field in NewEpochState
keeps track of the total assets that remain in treasury and reserves.

record Acnt : Type where
treasury reserves : Coin

ProtVer : Type
ProtVer = ℕ × ℕ

instance
Show-ProtVer : Show ProtVer
Show-ProtVer = Show-×

data pvCanFollow : ProtVer → ProtVer → Type where
canFollowMajor : pvCanFollow (m , n) (m + 1 , 0)
canFollowMinor : pvCanFollow (m , n) (m , n + 1)

Figure 8: Definitions related to protocol parameters

PParams contains parameters used in the Cardano ledger, which we group according to the
general purpose that each parameter serves.

• NetworkGroup: parameters related to the network settings;

• EconomicGroup: parameters related to the economic aspects of the ledger;

• TechnicalGroup: parameters related to technical settings;

• GovernanceGroup: parameters related to governance settings;

• SecurityGroup: parameters that can impact the security of the system.

The first four groups have the property that every protocol parameter is associated to pre-
cisely one of these groups. The SecurityGroup is special: a protocol parameter may or may not
be in the SecurityGroup. So, each protocol parameter belongs to at least one and at most two
groups. Note that in [2] there is no SecurityGroup, but there is the concept of security-relevant
protocol parameters. The difference between these notions is only social, so we implement
security-relevant protocol parameters as a group.

The purpose of the groups is to determine voting thresholds for proposals aiming to change
parameters. The thresholds depend on the groups of the parameters contained in such a proposal.

These new parameters are declared in Figure 9 and denote the following concepts.

• drepThresholds: governance thresholds for DReps; these are rational numbers named P1,
P2a, P2b, P3, P4, P5a, P5b, P5c, P5d, and P6;

• poolThresholds: pool-related governance thresholds; these are rational numbers named
Q1, Q2a, Q2b, Q4 and Q5e;

• ccMinSize: minimum constitutional committee size;

14

• ccMaxTermLength: maximum term limit (in epochs) of constitutional committee members;

• govActionLifetime: governance action expiration;

• govActionDeposit: governance action deposit;

• drepDeposit: DRep deposit amount;

• drepActivity: DRep activity period;

• minimumAVS: the minimum active voting threshold.

Figure 9 also defines the function paramsWellFormed. It performs some sanity checks on
protocol parameters.

Finally, to update parameters we introduce an abstract type. An update can be applied and
it has a set of groups associated with it. An update is well formed if it has at least one group
(i.e. if it updates something) and if it preserves well-formedness.

15

data PParamGroup : Type where
NetworkGroup : PParamGroup
EconomicGroup : PParamGroup
TechnicalGroup : PParamGroup
GovernanceGroup : PParamGroup
SecurityGroup : PParamGroup

record DrepThresholds : Type where
P1 P2a P2b P3 P4 P5a P5b P5c P5d P6 : ℚ

record PoolThresholds : Type where
Q1 Q2a Q2b Q4 Q5e : ℚ

record PParams : Type where
Network group

maxBlockSize : ℕ
maxTxSize : ℕ
maxHeaderSize : ℕ
maxTxExUnits : ExUnits
maxBlockExUnits : ExUnits
maxValSize : ℕ
maxCollateralInputs : ℕ

Economic group
a : ℕ
b : ℕ
keyDeposit : Coin
poolDeposit : Coin
coinsPerUTxOByte : Coin
prices : Prices
minFeeRefScriptCoinsPerByte : ℚ
maxRefScriptSizePerTx : ℕ
maxRefScriptSizePerBlock : ℕ
refScriptCostStride : ℕ
refScriptCostMultiplier : ℚ

Technical group
Emax : Epoch
nopt : ℕ
a0 : ℚ
collateralPercentage : ℕ
costmdls : CostModel

Governance group
poolThresholds : PoolThresholds
drepThresholds : DrepThresholds
ccMinSize : ℕ
ccMaxTermLength : ℕ
govActionLifetime : ℕ
govActionDeposit : Coin
drepDeposit : Coin
drepActivity : Epoch

Figure 9: Protocol parameter definitions

16

positivePParams : PParams → List ℕ
positivePParams pp = (maxBlockSize ∷ maxTxSize ∷ maxHeaderSize ∷ maxValSize ∷ refScriptCostStride

∷ coinsPerUTxOByte ∷ poolDeposit ∷ collateralPercentage ∷ ccMaxTermLength
∷ govActionLifetime ∷ govActionDeposit ∷ drepDeposit ∷ [])

paramsWellFormed : PParams → Type
paramsWellFormed pp = 0 ∉ fromList (positivePParams pp)

Figure 10: Protocol parameter well-formedness

Abstract types & functions

UpdateT : Type
applyUpdate : PParams → UpdateT → PParams
updateGroups : UpdateT → ℙ PParamGroup

Well-formedness condition

ppdWellFormed : UpdateT → Type
ppdWellFormed u = updateGroups u ≢ ∅
× ∀ pp → paramsWellFormed pp → paramsWellFormed (applyUpdate pp u)

Figure 11: Abstract type for parameter updates

17

9 Governance Actions
We introduce three distinct bodies that have specific functions in the new governance framework:

1. a constitutional committee (henceforth called CC);

2. a group of delegate representatives (henceforth called DReps);

3. the stake pool operators (henceforth called SPOs).
In the following figure, DocHash is abstract but in the implementation it will be instantiated
with a 32-bit hash type (like e.g. ScriptHash). We keep it separate because it is used for
a different purpose.

data GovRole : Type where
CC DRep SPO : GovRole

Voter = GovRole × Credential
GovActionID = TxId × ℕ

data VDeleg : Type where
credVoter : GovRole → Credential → VDeleg
abstainRep : VDeleg
noConfidenceRep : VDeleg

record Anchor : Type where
url : String
hash : DocHash

data GovAction : Type where
NoConfidence : GovAction
UpdateCommittee : (Credential ⇀ Epoch) → ℙ Credential → ℚ → GovAction
NewConstitution : DocHash → Maybe ScriptHash → GovAction
TriggerHF : ProtVer → GovAction
ChangePParams : PParamsUpdate → GovAction
TreasuryWdrl : (RwdAddr ⇀ Coin) → GovAction
Info : GovAction

actionWellFormed : GovAction → Type
actionWellFormed (ChangePParams x) = ppdWellFormed x
actionWellFormed (TreasuryWdrl x) =
(∀[a ∈ dom x] RwdAddr.net a ≡ NetworkId)
× (∃[v ∈ range x] ¬ (v ≡ 0))

actionWellFormed _ = ⊤

Figure 12: Governance actions

Figure 12 defines several data types used to represent governance actions including:

• GovActionID—a unique identifier for a governance action, consisting of the TxId of the
proposing transaction and an index to identify a proposal within a transaction;

• GovRole (governance role)—one of three available voter roles defined above (CC, DRep, SPO);

18

• VDeleg (voter delegation)—one of three ways to delegate votes: by credential, abstention,
or no confidence (credVoter, abstainRep, or noConfidenceRep);

• Anchor—a url and a document hash;

• GovAction (governance action)—one of seven possible actions (see Figure 13 for defini-
tions);

• actionWellFormed—in the case of protocol parameter changes, an action is well-formed if
it preserves the well-formedness of parameters. ppdWellFormed is effectively the same as
paramsWellFormed, except that it only applies to the parameters that are being changed.

The governance actions carry the following information:

• UpdateCommittee: a map of credentials and terms to add and a set of credentials to remove
from the committee;

• NewConstitution: a hash of the new constitution document and an optional proposal
policy;

• TriggerHF: the protocol version of the epoch to hard fork into;

• ChangePParams: the updates to the parameters; and

• TreasuryWdrl: a map of withdrawals.

Action Description
NoConfidence a motion to create a state of no-confidence in the current

constitutional committee
UpdateCommittee changes to the members of the constitutional committee and/or to

its signature threshold and/or terms
NewConstitution a modification to the off-chain Constitution and the proposal policy

script
TriggerHF3 triggers a non-backwards compatible upgrade of the network;

requires a prior software upgrade
ChangePParams a change to one or more updatable protocol parameters, excluding

changes to major protocol versions (“hard forks”)
TreasuryWdrl movements from the treasury
Info an action that has no effect on-chain, other than an on-chain record

Figure 13: Types of governance actions

9.1 Hash Protection
For some governance actions, in addition to obtaining the necessary votes, enactment requires
that the following condition is also satisfied: the state obtained by enacting the proposal is in
fact the state that was intended when the proposal was submitted. This is achieved by requiring
actions to unambiguously link to the state they are modifying via a pointer to the previous
modification. A proposal can only be enacted if it contains the GovActionID of the previously

3There are many varying definitions of the term “hard fork” in the blockchain industry. Hard forks typically
refer to non-backwards compatible updates of a network. In Cardano, we attach a bit more meaning to the
definition by calling any upgrade that would lead to more blocks being validated a “hard fork” and force nodes to
comply with the new protocol version, effectively rendering a node obsolete if it is unable to handle the upgrade.

19

enacted proposal modifying the same piece of state. NoConfidence and UpdateCommittee modify
the same state, while every other type of governance action has its own state that isn’t shared
with any other action. This means that the enactibility of a proposal can change when other
proposals are enacted.

However, not all types of governance actions require this strict protection. For TreasuryWdrl
and Info, enacting them does not change the state in non-commutative ways, so they can always
be enacted.

Types related to this hash protection scheme are defined in Figure 14.

NeedsHash : GovAction → Type
NeedsHash NoConfidence = GovActionID
NeedsHash (UpdateCommittee _ _ _) = GovActionID
NeedsHash (NewConstitution _ _) = GovActionID
NeedsHash (TriggerHF _) = GovActionID
NeedsHash (ChangePParams _) = GovActionID
NeedsHash (TreasuryWdrl _) = ⊤
NeedsHash Info = ⊤

HashProtected : Type → Type
HashProtected A = A × GovActionID

Figure 14: NeedsHash and HashProtected types

9.2 Votes and Proposals
The data type Vote represents the different voting options: yes, no, or abstain. For a Vote to be
cast, it must be packaged together with further information, such as who votes and for which
governance action. This information is combined in the GovVote record. An optional Anchor can
be provided to give context about why a vote was cast in a certain manner.

To propose a governance action, a GovProposal needs to be submitted. Beside the proposed
action, it requires:

• potentially a pointer to the previous action (see Section 9.1),

• potentially a pointer to the proposal policy (if one is required),

• a deposit, which will be returned to returnAddr, and

• an Anchor, providing further information about the proposal.

While the deposit is held, it is added to the deposit pot, similar to stake key deposits. It is
also counted towards the voting stake (but not the block production stake) of the reward address
to which it will be returned, so as not to reduce the submitter’s voting power when voting on
their own (and competing) actions. For a proposal to be valid, the deposit must be set to the
current value of govActionDeposit. The deposit will be returned when the action is removed
from the state in any way.

GovActionState is the state of an individual governance action. It contains the individual
votes, its lifetime, and information necessary to enact the action and to repay the deposit.

20

data Vote : Type where
yes no abstain : Vote

record GovVote : Type where
gid : GovActionID
voter : Voter
vote : Vote
anchor : Maybe Anchor

record GovProposal : Type where
action : GovAction
prevAction : NeedsHash action
policy : Maybe ScriptHash
deposit : Coin
returnAddr : RwdAddr
anchor : Anchor

record GovActionState : Type where
votes : Voter ⇀ Vote
returnAddr : RwdAddr
expiresIn : Epoch
action : GovAction
prevAction : NeedsHash action

Figure 15: Vote and proposal types

getDRepVote : GovVote → Maybe Credential
getDRepVote record { voter = (DRep , credential) } = just credential
getDRepVote _ = nothing

proposedCC : GovAction → ℙ Credential
proposedCC (UpdateCommittee x _ _) = dom x
proposedCC _ = ∅

Figure 16: Governance helper function

21

10 Transactions
Transactions are defined in Figure 17. A transaction is made up of a transaction body, a
collection of witnesses and some optional auxiliary data. Some key ingredients in the transaction
body are:

• A set txins of transaction inputs, each of which identifies an output from a previous
transaction. A transaction input consists of a transaction id and an index to uniquely
identify the output.

• An indexed collection txouts of transaction outputs. The TxOut type is an address paired
with a coin value.

• A transaction fee. This value will be added to the fee pot.

• The size txsize and the hash txid of the serialized form of the transaction that was
included in the block.

22

Abstract types

Ix TxId AuxiliaryData : Type

Derived types

TxIn = TxId × Ix
TxOut = Addr × Value × Maybe (Datum ⊎ DataHash) × Maybe Script
UTxO = TxIn ⇀ TxOut
Wdrl = RwdAddr ⇀ Coin
RdmrPtr = Tag × Ix

ProposedPPUpdates = KeyHash ⇀ PParamsUpdate
Update = ProposedPPUpdates × Epoch

Transaction types

record TxBody : Type where
txins : ℙ TxIn
refInputs : ℙ TxIn
txouts : Ix ⇀ TxOut
txfee : Coin
mint : Value
txvldt : Maybe Slot × Maybe Slot
txcerts : List DCert
txwdrls : Wdrl
txvote : List GovVote
txprop : List GovProposal
txdonation : Coin
txup : Maybe Update
txADhash : Maybe ADHash
txNetworkId : Maybe Network
curTreasury : Maybe Coin
txsize : ℕ
txid : TxId
collateral : ℙ TxIn
reqSigHash : ℙ KeyHash
scriptIntHash : Maybe ScriptHash

record TxWitnesses : Type where
vkSigs : VKey ⇀ Sig
scripts : ℙ Script
txdats : DataHash ⇀ Datum
txrdmrs : RdmrPtr ⇀ Redeemer × ExUnits

scriptsP1 : ℙ P1Script
scriptsP1 = mapPartial isInj₁ scripts

record Tx : Type where
body : TxBody
wits : TxWitnesses
isValid : Bool
txAD : Maybe AuxiliaryData

Figure 17: Transactions and related types
23

getValue : TxOut → Value
getValue (_ , v , _) = v

TxOutʰ = Addr × Value × Maybe (Datum ⊎ DataHash) × Maybe ScriptHash

txOutHash : TxOut → TxOutʰ
txOutHash (a , v , d , s) = a , (v , (d , M.map hash s))

getValueʰ : TxOutʰ → Value
getValueʰ (_ , v , _) = v

txinsVKey : ℙ TxIn → UTxO → ℙ TxIn
txinsVKey txins utxo = txins ∩ dom (utxo ∣^' (isVKeyAddr ∘ proj₁))

scriptOuts : UTxO → UTxO
scriptOuts utxo = filter (λ (_ , addr , _) → isScriptAddr addr) utxo

txinsScript : ℙ TxIn → UTxO → ℙ TxIn
txinsScript txins utxo = txins ∩ dom (proj₁ (scriptOuts utxo))

refScripts : Tx → UTxO → List Script
refScripts tx utxo =
mapMaybe (proj₂ ∘ proj₂ ∘ proj₂) $ setToList (range (utxo ∣ (txins ∪ refInputs)))
where open Tx; open TxBody (tx .body)

txscripts : Tx → UTxO → ℙ Script
txscripts tx utxo = scripts (tx .wits) ∪ fromList (refScripts tx utxo)
where open Tx; open TxWitnesses

lookupScriptHash : ScriptHash → Tx → UTxO → Maybe Script
lookupScriptHash sh tx utxo =
if sh ∈ map proj₁ (m) then
just (lookupᵐ m sh)

else
nothing

where m = setToHashMap (txscripts tx utxo)

Figure 18: Functions related to transactions

24

11 UTxO
11.1 Accounting

isTwoPhaseScriptAddress : Tx → UTxO → Addr → Type
isTwoPhaseScriptAddress tx utxo a =
if isScriptAddr a then
(λ {p} → if lookupScriptHash (getScriptHash a p) tx utxo

then (λ {s} → isP2Script s)
else ⊥)

else
⊥

getDataHashes : ℙ TxOut → ℙ DataHash
getDataHashes txo = mapPartial isInj₂ (mapPartial (proj₁ ∘ proj₂ ∘ proj₂) txo)

getInputHashes : Tx → UTxO → ℙ DataHash
getInputHashes tx utxo = getDataHashes
(filter (λ (a , _) → isTwoPhaseScriptAddress′ tx utxo a)

(range (utxo ∣ txins)))
where open Tx; open TxBody (tx .body)

totExUnits : Tx → ExUnits
totExUnits tx = ∑[(_ , eu) ← tx .wits .txrdmrs] eu
where open Tx; open TxWitnesses

Figure 19: Functions supporting UTxO rules

Figures 19, 21, and 22 define functions needed for the UTxO transition system. Note the
special multiplication symbol *↓ used in Figure 21: it means multiply and take the absolute
value of the result, rounded down to the nearest integer.

Figure 20 defines the types needed for the UTxO transition system. The UTxO transition
system is given in Figure 25.

• The function outs creates the unspent outputs generated by a transaction. It maps the
transaction id and output index to the output.

• The balance function calculates sum total of all the coin in a given UTxO.

The deposits have been reworked since the original Shelley design. We now track the amount
of every deposit individually. This fixes an issue in the original design: An increase in deposit
amounts would allow an attacker to make lots of deposits before that change and refund them
after the change. The additional funds necessary would have been provided by the treasury.
Since changes to protocol parameters were (and still are) known publicly and guaranteed before
they are enacted, this comes at zero risk for an attacker. This means the deposit amounts could
realistically never be increased. This issue is gone with the new design.

Similar to ScriptPurpose, DepositPurpose carries the information what the deposit is being
made for. The deposits are stored in the deposits field of UTxOState. updateDeposits is respon-
sible for updating this map, which is split into updateCertDeposits and updateProposalDeposits,
responsible for certificates and proposals respectively. Both of these functions iterate over the

25

relevant fields of the transaction body and insert or remove deposits depending on the informa-
tion seen. Note that some deposits can only be refunded at the epoch boundary and are not
removed by these functions.

There are two equivalent ways to introduce this tracking of the deposits. One option would
be to populate the deposits field of UTxOState with the correct keys and values that can be
extracted from the state of the previous era at the transition into the Conway era. Alternatively,
we can effectively treat the old handling of deposits as an erratum in the Shelley specification,
which we fix by implementing the new deposits logic in older eras and then replaying the chain.

UTxO environment

record UTxOEnv : Type where
slot : Slot
pparams : PParams
treasury : Coin

UTxO states
record UTxOState : Type where

utxo : UTxO
fees : Coin
deposits : Deposits
donations : Coin

UTxO transitions
⊢⇀⦇_,UTXO⦈_ : UTxOEnv → UTxOState → Tx → UTxOState → Type

Figure 20: UTxO transition-system types

As seen in Figures 21 and 23, we redefine depositRefunds and newDeposits via depositsChange,
which computes the difference between the total deposits before and after their application. This
simplifies their definitions and some correctness proofs. We then add the absolute value of de-
positsChange to consumed or produced depending on its sign. This is done via negPart and
posPart, which satisfy the key property that their difference is the identity function.

Figures 21 also shows the signature of ValidCertDeposits. Inhabitants of this type are
constructed in one of eight ways, corresponding to seven certificate types plus one for an empty
list of certificates. Suffice it to say that ValidCertDeposits is used to check the validity of the
deposits in a transaction so that the function updateCertDeposits can correctly register and
deregister deposits in the UTxO state based on the certificates in the transaction.

Figure 25 ties all the pieces of the UTXO rule together. (The _≡?_ symbol that appears in
the figure denotes a special equality where the value on the left-handside is optional; equality
holds if and only if the value on the left is present and equal to the value on the right.)

26

outs : TxBody → UTxO
outs tx = mapKeys (tx .txid ,_) (tx .txouts)

balance : UTxO → Value
balance utxo = ∑[x ← mapValues txOutHash utxo] getValueʰ x

cbalance : UTxO → Coin
cbalance utxo = coin (balance utxo)
refScriptsSize : UTxO → Tx → ℕ
refScriptsSize utxo tx = sum $ map scriptSize (refScripts tx utxo)

minfee : PParams → UTxO → Tx → Coin
minfee pp utxo tx = pp .a * tx .body .txsize + pp .b

+ txscriptfee (pp .prices) (totExUnits tx)
+ scriptsCost pp (refScriptsSize utxo tx)

certDeposit : DCert → PParams → Deposits
certDeposit (delegate c _ _ v) _ = ❴ CredentialDeposit c , v ❵
certDeposit (reg c _) pp = ❴ CredentialDeposit c , pp .keyDeposit ❵
certDeposit (regpool kh _) pp = ❴ PoolDeposit kh , pp .poolDeposit ❵
certDeposit (regdrep c v _) _ = ❴ DRepDeposit c , v ❵
certDeposit _ _ = ∅

certRefund : DCert → ℙ DepositPurpose
certRefund (dereg c _) = ❴ CredentialDeposit c ❵
certRefund (deregdrep c _) = ❴ DRepDeposit c ❵
certRefund _ = ∅

data ValidCertDeposits (pp : PParams) (deps : Deposits) : List DCert → Set

updateCertDeposits : PParams → List DCert → Deposits → Deposits
updateCertDeposits pp [] deposits = deposits
updateCertDeposits pp (delegate c vd khs v ∷ certs) deposits
= updateCertDeposits pp certs (deposits ∪⁺ certDeposit (delegate c vd khs v) pp)

updateCertDeposits pp (regpool kh p ∷ certs) deposits
= updateCertDeposits pp certs (deposits ∪⁺ certDeposit (regpool kh p) pp)

updateCertDeposits pp (regdrep c v a ∷ certs) deposits
= updateCertDeposits pp certs (deposits ∪⁺ certDeposit (regdrep c v a) pp)

updateCertDeposits pp (dereg c v ∷ certs) deposits
= updateCertDeposits pp certs (deposits ∣ certRefund (dereg c v)ᶜ)

updateCertDeposits pp (deregdrep c v ∷ certs) deposits
= updateCertDeposits pp certs (deposits ∣ certRefund (deregdrep c v)ᶜ)

updateCertDeposits pp (_ ∷ certs) deposits
= updateCertDeposits pp certs deposits

updateProposalDeposits : List GovProposal → TxId → Coin → Deposits → Deposits
updateProposalDeposits [] _ _ deposits = deposits
updateProposalDeposits (_ ∷ ps) txid gaDep deposits =
updateProposalDeposits ps txid gaDep deposits
∪⁺ ❴ GovActionDeposit (txid , length ps) , gaDep ❵

updateDeposits : PParams → TxBody → Deposits → Deposits
updateDeposits pp txb = updateCertDeposits pp txcerts

∘ updateProposalDeposits txprop txid (pp .govActionDeposit)

depositsChange : PParams → TxBody → Deposits → ℤ
depositsChange pp txb deposits =
getCoin (updateDeposits pp txb deposits) - getCoin deposits

Figure 21: Functions used in UTxO rules

27

data inInterval (slot : Slot) : (Maybe Slot × Maybe Slot) → Type where
both : ∀ {l r} → l ≤ slot × slot ≤ r → inInterval slot (just l , just r)
lower : ∀ {l} → l ≤ slot → inInterval slot (just l , nothing)
upper : ∀ {r} → slot ≤ r → inInterval slot (nothing , just r)
none : inInterval slot (nothing , nothing)

feesOK : PParams → Tx → UTxO → Type
feesOK pp tx utxo = (minfee pp utxo tx ≤ txfee × (txrdmrs ≢ ∅

→ (All (λ (addr , _) → isVKeyAddr addr) collateralRange
× isAdaOnly bal
× coin bal * 100 ≥ txfee * pp .collateralPercentage
× collateral ≢ ∅
)

)
)

where
open Tx tx; open TxBody body; open TxWitnesses wits; open PParams pp
collateralRange = range ((mapValues txOutHash utxo) ∣ collateral)
bal = balance (utxo ∣ collateral)

Figure 22: Functions used in UTxO rules, continued

depositRefunds : PParams → UTxOState → TxBody → Coin
depositRefunds pp st txb = negPart (depositsChange pp txb (st .deposits))

newDeposits : PParams → UTxOState → TxBody → Coin
newDeposits pp st txb = posPart (depositsChange pp txb (st .deposits))

consumed : PParams → UTxOState → TxBody → Value
consumed pp st txb
= balance (st .utxo ∣ txb .txins)
+ txb .mint
+ inject (depositRefunds pp st txb)
+ inject (getCoin (txb .txwdrls))

produced : PParams → UTxOState → TxBody → Value
produced pp st txb = balance (outs txb)

+ inject (txb .txfee)
+ inject (newDeposits pp st txb)
+ inject (txb .txdonation)

Figure 23: Functions used in UTxO rules, continued

28

⊢⇀⦇_,UTXOS⦈_ : UTxOEnv → UTxOState → Tx → UTxOState → Type

Scripts-Yes :
∀ {Γ} {s} {tx}
→ let open Tx tx renaming (body to txb); open TxBody txb

open UTxOEnv Γ renaming (pparams to pp)
open UTxOState s
sLst = collectPhaseTwoScriptInputs pp tx utxo

in
∙ ValidCertDeposits pp deposits txcerts
∙ evalScripts tx sLst ≡ isValid
∙ isValid ≡ true
────────────────────────────────

Γ ⊢ s ⇀⦇ tx ,UTXOS⦈
⎛
⎜
⎜
⎜
⎝

(utxo ∣ txins ᶜ) ∪ˡ (outs txb)
fees + txfee

updateDeposits pp txb deposits
donations + txdonation

⎞
⎟
⎟
⎟
⎠

Scripts-No :
∀ {Γ} {s} {tx}
→ let open Tx tx renaming (body to txb); open TxBody txb

open UTxOEnv Γ renaming (pparams to pp)
open UTxOState s
sLst = collectPhaseTwoScriptInputs pp tx utxo

in
∙ evalScripts tx sLst ≡ isValid
∙ isValid ≡ false
────────────────────────────────

Γ ⊢ s ⇀⦇ tx ,UTXOS⦈
⎛
⎜
⎜
⎜
⎝

utxo ∣ collateral ᶜ
fees + cbalance (utxo ∣ collateral)

deposits
donations

⎞
⎟
⎟
⎟
⎠

Figure 24: UTXOS rule

29

UTXO-inductive :
let open Tx tx renaming (body to txb); open TxBody txb

open UTxOEnv Γ renaming (pparams to pp)
open UTxOState s
txoutsʰ = (mapValues txOutHash txouts)
overhead = 160

in
∙ txins ≢ ∅ ∙ txins ∪ refInputs ⊆ dom utxo
∙ txins ∩ refInputs ≡ ∅ ∙ inInterval slot txvldt
∙ feesOK pp tx utxo ∙ consumed pp s txb ≡ produced pp s txb
∙ coin mint ≡ 0 ∙ txsize ≤ maxTxSize pp
∙ refScriptsSize utxo tx ≤ pp .maxRefScriptSizePerTx

∙ ∀[(_ , txout) ∈ txoutsʰ .proj₁]
inject ((overhead + utxoEntrySize txout) * coinsPerUTxOByte pp) ≤ᵗ getValueʰ txout

∙ ∀[(_ , txout) ∈ txoutsʰ .proj₁]
serSize (getValueʰ txout) ≤ maxValSize pp

∙ ∀[(a , _) ∈ range txoutsʰ]
Sum.All (const ⊤) (λ a → a .BootstrapAddr.attrsSize ≤ 64) a

∙ ∀[(a , _) ∈ range txoutsʰ] netId a ≡ NetworkId
∙ ∀[a ∈ dom txwdrls] a .RwdAddr.net ≡ NetworkId
∙ txNetworkId ≡? NetworkId
∙ curTreasury ≡? treasury
∙ Γ ⊢ s ⇀⦇ tx ,UTXOS⦈ s'
────────────────────────────────
Γ ⊢ s ⇀⦇ tx ,UTXO⦈ s'

Figure 25: UTXO inference rules

30

11.2 Witnessing
The purpose of witnessing is make sure the intended action is authorized by the holder of the
signing key. (For details see the Formal Ledger Specification for the Shelley Era [3, Sec. 8.3].)
Figure 26 defines functions used for witnessing. witsVKeyNeeded and scriptsNeeded are now
defined by projecting the same information out of credsNeeded. Note that the last component
of credsNeeded adds the script in the proposal policy only if it is present.

allowedLanguages has additional conditions for new features in Conway. If a transaction
contains any votes, proposals, a treasury donation or asserts the treasury amount, it is only
allowed to contain Plutus V3 scripts. Additionally, the presence of reference scripts or inline
scripts does not prevent Plutus V1 scripts from being used in a transaction anymore. Only
inline datums are now disallowed from appearing together with a Plutus V1 script.

getVKeys : ℙ Credential → ℙ KeyHash
getVKeys = mapPartial isKeyHashObj

allowedLanguages : Tx → UTxO → ℙ Language
allowedLanguages tx utxo =
if (∃[o ∈ os] isBootstrapAddr (proj₁ o))
then ∅

else if UsesV3Features txb
then fromList (PlutusV3 ∷ [])

else if ∃[o ∈ os] HasInlineDatum o
then fromList (PlutusV2 ∷ PlutusV3 ∷ [])

else
fromList (PlutusV1 ∷ PlutusV2 ∷ PlutusV3 ∷ [])

where
txb = tx .Tx.body; open TxBody txb
os = range (outs txb) ∪ range (utxo ∣ (txins ∪ refInputs))

getScripts : ℙ Credential → ℙ ScriptHash
getScripts = mapPartial isScriptObj

credsNeeded : UTxO → TxBody → ℙ (ScriptPurpose × Credential)
credsNeeded utxo txb
= map (λ (i , o) → (Spend i , payCred (proj₁ o))) ((utxo ∣ (txins ∪ collateral)))
∪ map (λ a → (Rwrd a , stake a)) (dom (txwdrls .proj₁))
∪ mapPartial (λ c → (Cert c ,_) <$> cwitness c) (fromList txcerts)
∪ map (λ x → (Mint x , ScriptObj x)) (policies mint)
∪ map (λ v → (Vote v , proj₂ v)) (fromList (map voter txvote))
∪ mapPartial (λ p → case p .policy of

(just sh) → just (Propose p , ScriptObj sh)
nothing → nothing) (fromList txprop)

witsVKeyNeeded : UTxO → TxBody → ℙ KeyHash
witsVKeyNeeded = getVKeys ∘ map proj₂ ∘ credsNeeded

scriptsNeeded : UTxO → TxBody → ℙ ScriptHash
scriptsNeeded = getScripts ∘ map proj₂ ∘ credsNeeded

Figure 26: Functions used for witnessing

31

⊢⇀⦇_,UTXOW⦈_ : UTxOEnv → UTxOState → Tx → UTxOState → Type

Figure 27: UTxOW transition-system types

UTXOW-inductive :
⟦ utxo , fees , deps , dons ⟧ᵘ = s
⟦ utxo' , fees' , deps' , dons' ⟧ᵘ = s'
witsKeyHashes = map hash (dom vkSigs)
witsScriptHashes = map hash scripts
inputHashes = getInputHashes tx utxo
refScriptHashes = fromList $ map hash (refScripts tx utxo)
neededHashes = scriptsNeeded utxo txb
txdatsHashes = dom txdats
allOutHashes = getDataHashes (range txouts)
nativeScripts = mapPartial isInj₁ (txscripts tx utxo)
∙ ∀[(vk , σ) ∈ vkSigs] isSigned vk (txidBytes txid) σ
∙ ∀[s ∈ nativeScripts] (hash s ∈ neededHashes → validP1Script witsKeyHashes txvldt s)
∙ witsVKeyNeeded utxo txb ⊆ witsKeyHashes
∙ neededHashes ＼ refScriptHashes ≡ᵉ witsScriptHashes
∙ inputHashes ⊆ txdatsHashes
∙ txdatsHashes ⊆ inputHashes ∪ allOutHashes ∪ getDataHashes (range (utxo ∣ refInputs))
∙ languages tx utxo ⊆ allowedLanguages tx utxo
∙ txADhash ≡ map hash txAD
∙ Γ ⊢ s ⇀⦇ tx ,UTXO⦈ s'
────────────────────────────────
Γ ⊢ s ⇀⦇ tx ,UTXOW⦈ s'

Figure 28: UTXOW inference rules

11.3 Plutus script context
CIP-69 unifies the arguments given to all types of Plutus scripts currently available (spending,
certifying, rewarding, minting, voting, proposing).

The formal specification permits running spending scripts in the absence datums in the
Conway era. However, since the interface with Plutus is kept abstract in this specification,
changes to the representation of the script context which are part of CIP-69 are not included here.
To provide a CIP-69-conformant implementation of Plutus to this specification, an additional
step processing the List Data argument we provide would be required.

In Figure 28, the line inputHashes ⊆ txdatsHashes compares two inhabitants of ℙ DataHash.
In the original Alonzo spec, these two terms would have inhabited ℙ (Maybe DataHash), where
a nothing is thrown out. In original spec, however, the right-hand side (txdatsHashes) could
never contain nothing, hence the left-hand side (inputHashes) could never contain nothing.

32

https://github.com/cardano-foundation/CIPs/tree/master/CIP-0069

12 Governance
The behavior of GovState is similar to that of a queue. New proposals are appended at the
end, but any proposal can be removed at the epoch boundary. However, for the purposes of
enactment, earlier proposals take priority. Note that EnactState used in GovEnv is defined later,
in Section 15.

• addVote inserts (and potentially overrides) a vote made for a particular governance action
(identified by its ID) by a credential with a role.

• addAction adds a new proposed action at the end of a given GovState.

• The validHFAction property indicates whether a given proposal, if it is a TriggerHF action,
can potentially be enacted in the future. For this to be the case, its prevAction needs to
exist, be another TriggerHF action and have a compatible version.

Figure 30 shows some of the functions used to determine whether certain actions are en-
actable in a given state. Specifically, allEnactable passes the GovState to getAidPairsList to
obtain a list of GovActionID-pairs which is then passed to enactable. The latter uses the _con-
nects_to_ function to check whether the list of GovActionID-pairs connects the proposed action
to a previously enacted one.

Additionally, govActionPriority assigns a priority to the various governance action types.
This is useful for ordering lists of governance actions as well as grouping governance actions by
constructor. In particular, the relations _∼_ and _≈_ defined in Figure 30 are used for determining
whether two actions are of the same “kind” in the following sense: either the actions arise from
the same constructor, or one action is NoConfidence and the other is an UpdateCommittee action.

The GOV transition system is now given as the reflexitive-transitive closure of the system
GOV’, described in Figure 31.

For GOV-Vote, we check that the governance action being voted on exists and the role is
allowed to vote. canVote is defined in Figure 47. Note that there are no checks on whether
the credential is actually associated with the role. This means that anyone can vote for, e.g.,
the CC role. However, during ratification those votes will only carry weight if they are properly
associated with members of the constitutional committee.

For GOV-Propose, we check well-formedness, correctness of the deposit and some conditions
depending on the type of the action:

• for ChangePParams or TreasuryWdrl, the proposal policy needs to be provided;

• for UpdateCommittee, no proposals with members expiring in the present or past epoch are
allowed, and candidates cannot be added and removed at the same time;

• and we check the validity of hard-fork actions via validHFAction.

33

Derived types

GovState = List (GovActionID × GovActionState)

record GovEnv : Type where
txid : TxId
epoch : Epoch
pparams : PParams
ppolicy : Maybe ScriptHash
enactState : EnactState
certState : CertState

Functions used in the GOV rules

govActionPriority : GovAction → ℕ
govActionPriority NoConfidence = 0
govActionPriority (UpdateCommittee _ _ _) = 1
govActionPriority (NewConstitution _ _) = 2
govActionPriority (TriggerHF _) = 3
govActionPriority (ChangePParams _) = 4
govActionPriority (TreasuryWdrl _) = 5
govActionPriority Info = 6

∼ : ℕ → ℕ → Type
n ∼ m = (n ≡ m) ⊎ (n ≡ 0 × m ≡ 1) ⊎ (n ≡ 1 × m ≡ 0)

≈ᵍ : GovAction → GovAction → Type
a ≈ᵍ a' = (govActionPriority a) ∼ (govActionPriority a')

insertGovAction : GovState → GovActionID × GovActionState → GovState
insertGovAction [] gaPr = [gaPr]
insertGovAction ((gaID₀ , gaSt₀) ∷ gaPrs) (gaID₁ , gaSt₁)
= if (govActionPriority (action gaSt₀)) ≤? (govActionPriority (action gaSt₁))
then (gaID₀ , gaSt₀) ∷ insertGovAction gaPrs (gaID₁ , gaSt₁)
else (gaID₁ , gaSt₁) ∷ (gaID₀ , gaSt₀) ∷ gaPrs

mkGovStatePair : Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash a
→ GovActionID × GovActionState

mkGovStatePair e aid addr a prev = (aid , record
{ votes = ∅ ; returnAddr = addr ; expiresIn = e ; action = a ; prevAction = prev })

addAction : GovState
→ Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash a
→ GovState

addAction s e aid addr a prev = insertGovAction s (mkGovStatePair e aid addr a prev)
addVote : GovState → GovActionID → Voter → Vote → GovState
addVote s aid voter v = map modifyVotes s
where modifyVotes : GovActionID × GovActionState → GovActionID × GovActionState

modifyVotes = λ (gid , s') → gid , record s'
{ votes = if gid ≡ aid then insert (votes s') voter v else votes s'}

isRegistered : GovEnv → Voter → Type
isRegistered ⟦ _ , _ , _ , _ , _ , ⟦ _ , pState , gState ⟧ᶜ ⟧ᵍ (r , c) = case r of λ where
CC → just c ∈ range (gState .ccHotKeys)
DRep → c ∈ dom (gState .dreps)
SPO → c ∈ map KeyHashObj (dom (pState .pools))

validHFAction : GovProposal → GovState → EnactState → Type
validHFAction (record { action = TriggerHF v ; prevAction = prev }) s e =
(let (v' , aid) = EnactState.pv e in aid ≡ prev × pvCanFollow v' v)
⊎ ∃₂[x , v'] (prev , x) ∈ fromList s × x .action ≡ TriggerHF v' × pvCanFollow v' v

validHFAction _ _ _ = ⊤

Transition relation types

⊢⇀⦇_,GOV'⦈_ : GovEnv × ℕ → GovState → GovVote ⊎ GovProposal → GovState → Type
⊢⇀⦇_,GOV⦈_ : GovEnv → GovState → List (GovVote ⊎ GovProposal) → GovState → Type

Figure 29: Types and functions used in the GOV transition system

34

enactable : EnactState → List (GovActionID × GovActionID)
→ GovActionID × GovActionState → Type

enactable e aidPairs = λ (aidNew , as) → case getHashES e (action as) of
nothing → ⊤
(just aidOld) → ∃[t] fromList t ⊆ fromList aidPairs

× Unique t × t connects aidNew to aidOld

allEnactable : EnactState → GovState → Type
allEnactable e aid×states = All (enactable e (getAidPairsList aid×states)) aid×states

hasParentE : EnactState → GovActionID → GovAction → Type
hasParentE e aid a = case getHashES e a of
nothing → ⊤
(just id) → id ≡ aid

hasParent : EnactState → GovState → (a : GovAction) → NeedsHash a → Type
hasParent e s a aid with getHash aid
... | just aid' = hasParentE e aid' a

⊎ Any (λ (gid , gas) → gid ≡ aid' × action gas ≈ᵍ a) s
... | nothing = ⊤

Figure 30: Enactability predicate

35

GOV-Vote : ∀ {x ast} → let
open GovEnv Γ
vote = record { gid = aid ; voter = voter ; vote = v ; anchor = x }

in
∙ (aid , ast) ∈ fromList s
∙ canVote pparams (action ast) (proj₁ voter)
∙ isRegistered Γ voter
───────────────────────────────────────
(Γ , k) ⊢ s ⇀⦇ inj₁ vote ,GOV'⦈ addVote s aid voter v

GOV-Propose : ∀ {x} → let
open GovEnv Γ; open PParams pparams hiding (a)
prop = record { returnAddr = addr ; action = a ; anchor = x

; policy = p ; deposit = d ; prevAction = prev }
s' = addAction s (govActionLifetime +ᵉ epoch) (txid , k) addr a prev

in
∙ actionWellFormed a
∙ d ≡ govActionDeposit
∙ (∃[u] a ≡ ChangePParams u ⊎ ∃[w] a ≡ TreasuryWdrl w → p ≡ ppolicy)
∙ (¬ (∃[u] a ≡ ChangePParams u ⊎ ∃[w] a ≡ TreasuryWdrl w) → p ≡ nothing)
∙ (∀ {new rem q} → a ≡ UpdateCommittee new rem q

→ ∀[e ∈ range new] epoch < e × dom new ∩ rem ≡ᵉ ∅)
∙ validHFAction prop s enactState
∙ hasParent enactState s a prev
∙ addr .RwdAddr.net ≡ NetworkId
───────────────────────────────────────
(Γ , k) ⊢ s ⇀⦇ inj₂ prop ,GOV'⦈ s'

⊢⇀⦇_,GOV⦈_ = ReflexiveTransitiveClosureᵢ {sts = _⊢_⇀⦇_,GOV'⦈_}

Figure 31: Rules for the GOV transition system

36

13 Certificates

Derived types

data DepositPurpose : Type where
CredentialDeposit : Credential → DepositPurpose
PoolDeposit : KeyHash → DepositPurpose
DRepDeposit : Credential → DepositPurpose
GovActionDeposit : GovActionID → DepositPurpose

Deposits = DepositPurpose ⇀ Coin

Figure 32: Deposit types

record PoolParams : Type where
rewardAddr : Credential

data DCert : Type where
delegate : Credential → Maybe VDeleg → Maybe KeyHash → Coin → DCert
dereg : Credential → Maybe Coin → DCert
regpool : KeyHash → PoolParams → DCert
retirepool : KeyHash → Epoch → DCert
regdrep : Credential → Coin → Anchor → DCert
deregdrep : Credential → Coin → DCert
ccreghot : Credential → Maybe Credential → DCert

cwitness : DCert → Maybe Credential
cwitness (delegate c _ _ _) = just c
cwitness (dereg c _) = just c
cwitness (regpool kh _) = just $ KeyHashObj kh
cwitness (retirepool kh _) = just $ KeyHashObj kh
cwitness (regdrep c _ _) = just c
cwitness (deregdrep c _) = just c
cwitness (ccreghot c _) = just c

Figure 33: Delegation definitions

13.1 Removal of Pointer Addresses, Genesis Delegations and MIR Certifi-
cates

In the Conway era, support for pointer addresses, genesis delegations and MIR certificates is
removed. In DState, this means that the four fields relating to those features are no longer
present, and DelegEnv contains none of the fields it used to in the Shelley era.

Note that pointer addresses are still usable, only their staking functionality has been retired.
So all funds locked behind pointer addresses are still accessible, they just don’t count towards
the stake distribution anymore. Genesis delegations and MIR certificates have been superceded
by the new governance mechanisms, in particular the TreasuryWdrl governance action in case of
the MIR certificates.

37

record CertEnv : Type where
epoch : Epoch
pp : PParams
votes : List GovVote
wdrls : RwdAddr ⇀ Coin
coldCreds : ℙ Credential

record DState : Type where
voteDelegs : Credential ⇀ VDeleg
stakeDelegs : Credential ⇀ KeyHash
rewards : Credential ⇀ Coin

record PState : Type where
pools : KeyHash ⇀ PoolParams
retiring : KeyHash ⇀ Epoch

record GState : Type where
dreps : Credential ⇀ Epoch
ccHotKeys : Credential ⇀ Maybe Credential

record CertState : Type where
dState : DState
pState : PState
gState : GState

record DelegEnv : Type where
pparams : PParams
pools : KeyHash ⇀ PoolParams
delegatees : ℙ Credential

GovCertEnv = CertEnv
PoolEnv = PParams

Figure 34: Types used for CERTS transition system

13.2 Explicit Deposits
Registration and deregistration of staking credentials are now required to explicitly state the
deposit that is being paid or refunded. This aligns them better with other design decisions such
as having explicit transaction fees and helps make this information visible to light clients and
hardware wallets. While not shown in the figures, the old certificates without explicit deposits
will still be supported for some time for backwards compatibility.

13.3 Delegation
Registered credentials can now delegate to a DRep as well as to a stake pool. This is achieved
by giving the delegate certificate two optional fields, corresponding to a DRep and stake pool.
Stake can be delegated for voting and block production simultaneously, since these are two
separate features. In fact, preventing this could weaken the security of the chain, since security
relies on high participation of honest stake holders.

38

13.4 Governance Certificate Rules
The rules for transition systems dealing with individual certificates are defined in Figures 36,
37 and 38. GOVCERT deals with the new certificates relating to DReps and the constitutional
committee.

• GOVCERT-regdrep registers (or re-registers) a DRep. In case of registation, a deposit needs
to be paid. Either way, the activity period of the DRep is reset.

• GOVCERT-deregdrep deregisters a DRep.

• GOVCERT-ccreghot registers a “hot” credential for constitutional committee members.4 We
check that the cold key did not previously resign from the committee. We allow this
delegation for any cold credential that is either part of EnactState or is is a proposal. This
allows a newly elected member of the constitutional committee to immediately delegate
their vote to a hot key and use it to vote. Since votes are counted after previous actions
have been enacted, this allows constitutional committee members to act without a delay
of one epoch.

⊢⇀⦇_,DELEG⦈_ : DelegEnv → DState → DCert → DState → Type
⊢⇀⦇_,POOL⦈_ : PoolEnv → PState → DCert → PState → Type
⊢⇀⦇_,GOVCERT⦈_ : GovCertEnv → GState → DCert → GState → Type
⊢⇀⦇_,CERT⦈_ : CertEnv → CertState → DCert → CertState → Type
⊢⇀⦇_,CERTBASE⦈_ : CertEnv → CertState → ⊤ → CertState → Type

⊢⇀⦇_,CERTS⦈_ : CertEnv → CertState → List DCert → CertState → Type
⊢⇀⦇_,CERTS⦈_ = ReflexiveTransitiveClosureᵇ' {_⊢_⇀⟦_⟧ᵇ_ = _⊢_⇀⦇_,CERTBASE⦈_} {_⊢_⇀⦇_,CERT⦈_}

Figure 35: Types for the transition systems relating to certificates

Figure 39 assembles the CERTS transition system by bundling the previously defined pieces
together into the CERT system, and then taking the reflexive-transitive closure of CERT to-
gether with CERTBASE as the base case. CERTBASE does the following:

• check the correctness of withdrawals and ensure that withdrawals only happen from cre-
dentials that have delegated their voting power;

• set the rewards of the credentials that withdrew funds to zero;

• and set the activity timer of all DReps that voted to drepActivity epochs in the future.

4By “hot” and “cold” credentials we mean the following: a cold credential is used to register a hot credential,
and then the hot credential is used for voting. The idea is that the access to the cold credential is kept in a secure
location, while the hot credential is more conveniently accessed. If the hot credential is compromised, it can be
changed using the cold credential.

39

DELEG-delegate : let open PParams pp in
∙ (c ∉ dom rwds → d ≡ keyDeposit)
∙ (c ∈ dom rwds → d ≡ 0)
∙ mv ∈ map (just ∘ credVoter DRep) delegatees ∪

fromList (nothing ∷ just abstainRep ∷ just noConfidenceRep ∷ [])
∙ mkh ∈ map just (dom pools) ∪ ❴ nothing ❵
────────────────────────────────

⎛
⎜
⎜
⎝

pp
pools

delegatees

⎞
⎟
⎟
⎠
⊢

⎛
⎜
⎜
⎝

vDelegs
sDelegs
rwds

⎞
⎟
⎟
⎠

⇀⦇ delegate c mv mkh d ,DELEG⦈
⎛
⎜
⎜
⎝

insertIfJust c mv vDelegs
insertIfJust c mkh sDelegs

rwds ∪ˡ ❴ c , 0 ❵

⎞
⎟
⎟
⎠

DELEG-dereg :
∙ (c , 0) ∈ rwds
────────────────────────────────

⎛
⎜
⎜
⎝

pp
pools

delegatees

⎞
⎟
⎟
⎠
⊢

⎛
⎜
⎜
⎝

vDelegs
sDelegs
rwds

⎞
⎟
⎟
⎠

⇀⦇ dereg c md ,DELEG⦈
⎛
⎜
⎜
⎝

vDelegs ∣ ❴ c ❵ ᶜ
sDelegs ∣ ❴ c ❵ ᶜ
rwds ∣ ❴ c ❵ ᶜ

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

pp
pools

delegatees

⎞
⎟
⎟
⎠
⊢
⎛
⎜
⎜
⎝

vDelegs
sDelegs
rwds

⎞
⎟
⎟
⎠

⇀⦇ reg c d ,DELEG⦈
⎛
⎜
⎜
⎝

vDelegs
sDelegs

rwds ∪ˡ ❴ c , 0 ❵

⎞
⎟
⎟
⎠

Figure 36: Auxiliary DELEG transition system

POOL-regpool :
∙ kh ∉ dom pools
────────────────────────────────

pp ⊢(
pools

retiring) ⇀⦇ regpool kh poolParams ,POOL⦈(
❴ kh , poolParams ❵ ∪ˡ pools

retiring)

POOL-retirepool :
────────────────────────────────

pp ⊢ (
pools

retiring) ⇀⦇ retirepool kh e ,POOL⦈ (
pools

❴ kh , e ❵ ∪ˡ retiring)

Figure 37: Auxiliary POOL transition system

40

GOVCERT-regdrep : ∀ {pp} → let open PParams pp in
∙ (d ≡ drepDeposit × c ∉ dom dReps) ⊎ (d ≡ 0 × c ∈ dom dReps)
────────────────────────────────

⎛
⎜
⎜
⎜
⎜
⎝

e
pp
vs

wdrls
cc

⎞
⎟
⎟
⎟
⎟
⎠

⊢(
dReps
ccKeys) ⇀⦇ regdrep c d an ,GOVCERT⦈(

❴ c , e + drepActivity ❵ ∪ˡ dReps
ccKeys)

GOVCERT-deregdrep :
∙ c ∈ dom dReps
────────────────────────────────

⎛
⎜
⎜
⎜
⎜
⎝

e
pp
vs

wdrls
cc

⎞
⎟
⎟
⎟
⎟
⎠

⊢ (
dReps
ccKeys) ⇀⦇ deregdrep c d ,GOVCERT⦈ (

dReps ∣ ❴ c ❵ ᶜ
ccKeys)

GOVCERT-ccreghot :
∙ (c , nothing) ∉ ccKeys
∙ c ∈ cc
────────────────────────────────

⎛
⎜
⎜
⎜
⎜
⎝

e
pp
vs

wdrls
cc

⎞
⎟
⎟
⎟
⎟
⎠

⊢ (
dReps
ccKeys) ⇀⦇ ccreghot c mc ,GOVCERT⦈ (

dReps
❴ c , mc ❵ ∪ˡ ccKeys)

Figure 38: Auxiliary GOVCERT transition system

41

CERT transitions

CERT-deleg :

∙
⎛
⎜
⎜
⎝

pp
PState.pools stᵖ

dom (GState.dreps stᵍ)

⎞
⎟
⎟
⎠
⊢ stᵈ ⇀⦇ dCert ,DELEG⦈ stᵈ'

────────────────────────────────
⎛
⎜
⎜
⎜
⎜
⎝

e
pp
vs

wdrls
cc

⎞
⎟
⎟
⎟
⎟
⎠

⊢
⎛
⎜
⎜
⎝

stᵈ
stᵖ
stᵍ

⎞
⎟
⎟
⎠

⇀⦇ dCert ,CERT⦈
⎛
⎜
⎜
⎝

stᵈ'
stᵖ
stᵍ

⎞
⎟
⎟
⎠

CERT-pool :
∙ pp ⊢ stᵖ ⇀⦇ dCert ,POOL⦈ stᵖ'
────────────────────────────────

⎛
⎜
⎜
⎜
⎜
⎝

e
pp
vs

wdrls
cc

⎞
⎟
⎟
⎟
⎟
⎠

⊢
⎛
⎜
⎜
⎝

stᵈ
stᵖ
stᵍ

⎞
⎟
⎟
⎠

⇀⦇ dCert ,CERT⦈
⎛
⎜
⎜
⎝

stᵈ
stᵖ'
stᵍ

⎞
⎟
⎟
⎠

CERT-vdel :
∙ Γ ⊢ stᵍ ⇀⦇ dCert ,GOVCERT⦈ stᵍ'
────────────────────────────────

Γ ⊢
⎛
⎜
⎜
⎝

stᵈ
stᵖ
stᵍ

⎞
⎟
⎟
⎠

⇀⦇ dCert ,CERT⦈
⎛
⎜
⎜
⎝

stᵈ
stᵖ
stᵍ'

⎞
⎟
⎟
⎠

CERTBASE transition

CERT-base : let
open PParams pp
refresh = mapPartial getDRepVote (fromList vs)
refreshedDReps = mapValueRestricted (const (e + drepActivity)) dReps refresh
wdrlCreds = map stake (dom wdrls)
validVoteDelegs = voteDelegs ∣^ (map (credVoter DRep) (dom dReps)

∪ fromList (noConfidenceRep ∷ abstainRep ∷ []))
in
∙ filter isKeyHash wdrlCreds ⊆ dom voteDelegs
∙ map (map₁ stake) (wdrls) ⊆ rewards
────────────────────────────────

⎛
⎜
⎜
⎜
⎜
⎝

e
pp
vs

wdrls
cc

⎞
⎟
⎟
⎟
⎟
⎠

⊢

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

voteDelegs
stakeDelegs

rewards

⎞
⎟
⎟
⎠

stᵖ

(
dReps

ccHotKeys)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⇀⦇ _ ,CERTBASE⦈

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

validVoteDelegs
stakeDelegs

constMap wdrlCreds 0 ∪ˡ rewards

⎞
⎟
⎟
⎠

stᵖ

(
refreshedDReps

ccHotKeys)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 39: CERTS rules

42

14 Ledger State Transition
The entire state transformation of the ledger state caused by a valid transaction can now be
given as a combination of the previously defined transition systems.

record LEnv : Type where
slot : Slot
ppolicy : Maybe ScriptHash
pparams : PParams
enactState : EnactState
treasury : Coin

record LState : Type where
utxoSt : UTxOState
govSt : GovState
certState : CertState

txgov : TxBody → List (GovVote ⊎ GovProposal)
txgov txb = map inj₂ txprop ++ map inj₁ txvote
where open TxBody txb

isUnregisteredDRep : CertState → Voter → Type

isUnregisteredDRep
⎛
⎜
⎜
⎝

_
_

gState

⎞
⎟
⎟
⎠
(r , c) = r ≡ DRep × c ∉ dom (gState .dreps)

removeOrphanDRepVotes : CertState → GovActionState → GovActionState
removeOrphanDRepVotes certState gas = record gas { votes = votes′ }
where
votes′ = filterKeys (¬_ ∘ isUnregisteredDRep certState) (votes gas)

|ᵒ : GovState → CertState → GovState
govSt |ᵒ certState = L.map (map₂ (removeOrphanDRepVotes certState)) govSt
allColdCreds : GovState → EnactState → ℙ Credential
allColdCreds govSt es =
ccCreds (es .cc) ∪ concatMap (λ (_ , st) → proposedCC (st .action)) (fromList govSt)

Figure 40: Types and functions for the LEDGER transition system

43

⊢⇀⦇_,LEDGER⦈_ : LEnv → LState → Tx → LState → Type

Figure 41: The type of the LEDGER transition system

LEDGER-V : let open LState s; txb = tx .body; open TxBody txb; open LEnv Γ in
∙ isValid tx ≡ true
∙ record { LEnv Γ } ⊢ utxoSt ⇀⦇ tx ,UTXOW⦈ utxoSt'

∙

⎛
⎜
⎜
⎜
⎜
⎝

epoch slot
pparams
txvote
txwdrls

allColdCreds govSt enactState

⎞
⎟
⎟
⎟
⎟
⎠

⊢ certState ⇀⦇ txcerts ,CERTS⦈ certState'

∙

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

txid
epoch slot
pparams
ppolicy

enactState
certState'

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊢ govSt |ᵒ certState' ⇀⦇ txgov txb ,GOV⦈ govSt'

────────────────────────────────

Γ ⊢ s ⇀⦇ tx ,LEDGER⦈
⎛
⎜
⎜
⎝

utxoSt'
govSt'

certState'

⎞
⎟
⎟
⎠

LEDGER-I : let open LState s; txb = tx .body; open TxBody txb; open LEnv Γ in
∙ isValid tx ≡ false
∙ record { LEnv Γ } ⊢ utxoSt ⇀⦇ tx ,UTXOW⦈ utxoSt'
────────────────────────────────

Γ ⊢ s ⇀⦇ tx ,LEDGER⦈
⎛
⎜
⎜
⎝

utxoSt'
govSt

certState

⎞
⎟
⎟
⎠

Figure 42: LEDGER transition system

⊢⇀⦇_,LEDGERS⦈_ : LEnv → LState → List Tx → LState → Type
⊢⇀⦇_,LEDGERS⦈_ = ReflexiveTransitiveClosure {sts = _⊢_⇀⦇_,LEDGER⦈_}

Figure 43: LEDGERS transition system

44

15 Enactment
Figure 44 contains some definitions required to define the ENACT transition system. EnactEnv
is the environment and EnactState the state of ENACT, which enacts a governance action.
All governance actions except TreasuryWdrl and Info modify EnactState permanently, which
of course can have further consequences. TreasuryWdrl accumulates withdrawal temporarily
in EnactState, but this information is applied and discarded immediately in EPOCH. Also,
enacting these governance actions is the only way of modifying EnactState. The withdrawals
field of EnactState is special in that it is ephemeral—ENACT accumulates withdrawals there
which are paid out at the next epoch boundary where this field will be reset.

Note that all other fields of EnactState also contain a GovActionID since they are HashPro-
tected.

record EnactEnv : Type where
gid : GovActionID
treasury : Coin
epoch : Epoch

record EnactState : Type where
cc : HashProtected (Maybe ((Credential ⇀ Epoch) × ℚ))
constitution : HashProtected (DocHash × Maybe ScriptHash)
pv : HashProtected ProtVer
pparams : HashProtected PParams
withdrawals : RwdAddr ⇀ Coin

ccCreds : HashProtected (Maybe ((Credential ⇀ Epoch) × ℚ)) → ℙ Credential
ccCreds (just x , _) = dom (x .proj₁)
ccCreds (nothing , _) = ∅

getHash : ∀ {a} → NeedsHash a → Maybe GovActionID
getHash {NoConfidence} h = just h
getHash {UpdateCommittee _ _ _} h = just h
getHash {NewConstitution _ _} h = just h
getHash {TriggerHF _} h = just h
getHash {ChangePParams _} h = just h
getHash {TreasuryWdrl _} _ = nothing
getHash {Info} _ = nothing

getHashES : EnactState → GovAction → Maybe GovActionID
getHashES es NoConfidence = just (es .cc .proj₂)
getHashES es (UpdateCommittee _ _ _) = just (es .cc .proj₂)
getHashES es (NewConstitution _ _) = just (es .constitution .proj₂)
getHashES es (TriggerHF _) = just (es .pv .proj₂)
getHashES es (ChangePParams _) = just (es .pparams .proj₂)
getHashES es (TreasuryWdrl _) = nothing
getHashES es Info = nothing

Type of the ENACT transition system
⊢⇀⦇_,ENACT⦈_ : EnactEnv → EnactState → GovAction → EnactState → Type

Figure 44: Types and function used for the ENACT transition system

45

Figures 45 and 46 define the rules of the ENACT transition system. Usually no preconditions
are checked and the state is simply updated (including the GovActionID for the hash protection
scheme, if required). The exceptions are UpdateCommittee and TreasuryWdrl:

• UpdateCommittee requires that maximum terms are respected, and

• TreasuryWdrl requires that the treasury is able to cover the sum of all withdrawals (old
and new).

Enact-NoConf :
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ NoConfidence ,ENACT⦈ record s { cc = nothing , gid }

Enact-NewComm : let old = maybe proj₁ ∅ (s .cc .proj₁)
maxTerm = s .pparams .proj₁ .ccMaxTermLength +ᵉ e

in
∀[term ∈ range new] term ≤ maxTerm
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ UpdateCommittee new rem q ,ENACT⦈

record s { cc = just ((new ∪ˡ old) ∣ rem ᶜ , q) , gid }

Enact-NewConst :
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ NewConstitution dh sh ,ENACT⦈ record s { constitution = (dh , sh) , gid }

Figure 45: ENACT transition system

46

Enact-HF :
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ TriggerHF v ,ENACT⦈ record s { pv = v , gid }

Enact-PParams :
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ ChangePParams up ,ENACT⦈

record s { pparams = applyUpdate (s .pparams .proj₁) up , gid }

Enact-Wdrl : let newWdrls = s .withdrawals ∪⁺ wdrl in
∑[x ← newWdrls] x ≤ t
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ TreasuryWdrl wdrl ,ENACT⦈ record s { withdrawals = newWdrls }

Enact-Info :
───────────────────────────────────────

⎛
⎜
⎜
⎝

gid
t
e

⎞
⎟
⎟
⎠
⊢ s ⇀⦇ Info ,ENACT⦈ s

Figure 46: ENACT transition system (continued)

47

16 Ratification
Governance actions are ratified through on-chain votes. Different kinds of governance actions
have different ratification requirements but always involve at least two of the three governance
bodies.

A successful motion of no-confidence, election of a new constitutional committee, a consti-
tutional change, or a hard-fork delays ratification of all other governance actions until the first
epoch after their enactment. This gives a new constitutional committee enough time to vote on
current proposals, re-evaluate existing proposals with respect to a new constitution, and ensures
that the (in principle arbitrary) semantic changes caused by enacting a hard-fork do not have
unintended consequences in combination with other actions.

16.1 Ratification Requirements
Figure 47 details the ratification requirements for each governance action scenario. For a gover-
nance action to be ratified, all of these requirements must be satisfied, on top of other conditions
that are explained further down. The threshold function is defined as a table, with a row for
each type of GovAction and the colums representing the CC, DRep and SPO roles in that order.

The symbols mean the following:

• vote x: For an action to pass, the stake associated with the yes votes must exceed the
threshold x.

• ─: The body of governance does not participate in voting.

• ✓: The constitutional committee needs to approve an action, with the threshold assigned
to it.

• ✓†: Voting is possible, but the action will never be enacted. This is equivalent to vote 2
(or any other number above 1).

Two rows in this table contain functions that compute the DRep and SPO thresholds simulta-
neously: the rows for UpdateCommittee and ChangePParams.

For UpdateCommittee, there can be different thresholds depending on whether the system is
in a state of no-confidence or not. This information is provided via the ccThreshold argument:
if the system is in a state of no-confidence, then ccThreshold is set to nothing.

In case of the ChangePParams action, the thresholds further depend on what groups that
action is associated with. pparamThreshold associates a pair of thresholds to each individual
group. Since an individual update can contain multiple groups, the actual thresholds are then
given by taking the maximum of all those thresholds.

Note that each protocol parameter belongs to exactly one of the four groups that have a
DRep threshold, so a DRep vote will always be required. A protocol parameter may or may not
be in the SecurityGroup, so an SPO vote may not be required.

Finally, each of the P𝑥 and Q𝑥 in Figure 47 are protocol parameters.

16.2 Protocol Parameters and Governance Actions
Voting thresholds for protocol parameters can be set by group, and we do not require that each
protocol parameter governance action be confined to a single group. In case a governance action
carries updates for multiple parameters from different groups, the maximum threshold of all the
groups involved will apply to any given such governance action.

The purpose of the SecurityGroup is to add an additional check to security-relevant protocol
parameters. Any proposal that includes a change to a security-relevant protocol parameter must
also be accepted by at least half of the SPO stake.

48

threshold : PParams → Maybe ℚ → GovAction → GovRole → Maybe ℚ
threshold pp ccThreshold =
NoConfidence → ∣ ─ ∣ vote P1 ∣ vote Q1 ∣
(UpdateCommittee _ _ _) → ∣ ─ ∥ P/Q2a/b ∣
(NewConstitution _ _) → ∣ ✓ ∣ vote P3 ∣ ─ ∣
(TriggerHF _) → ∣ ✓ ∣ vote P4 ∣ vote Q4 ∣
(ChangePParams x) → ∣ ✓ ∥ P/Q5 x ∣
(TreasuryWdrl _) → ∣ ✓ ∣ vote P6 ∣ ─ ∣
Info → ∣ ✓† ∣ ✓† ∣ ✓† ∣
where
P/Q2a/b : Maybe ℚ × Maybe ℚ
P/Q2a/b = case ccThreshold of

(just _) → (vote P2a , vote Q2a)
nothing → (vote P2b , vote Q2b)

pparamThreshold : PParamGroup → Maybe ℚ × Maybe ℚ
pparamThreshold NetworkGroup = (vote P5a , ─)
pparamThreshold EconomicGroup = (vote P5b , ─)
pparamThreshold TechnicalGroup = (vote P5c , ─)
pparamThreshold GovernanceGroup = (vote P5d , ─)
pparamThreshold SecurityGroup = (─ , vote Q5e)

P/Q5 : PParamsUpdate → Maybe ℚ × Maybe ℚ
P/Q5 ppu = maxThreshold (map (proj₁ ∘ pparamThreshold) (updateGroups ppu))

, maxThreshold (map (proj₂ ∘ pparamThreshold) (updateGroups ppu))

canVote : PParams → GovAction → GovRole → Type
canVote pp a r = Is-just (threshold pp nothing a r)

Figure 47: Functions related to voting

16.3 Ratification Restrictions
As mentioned earlier, most governance actions must include a GovActionID for the most recently
enacted action of its given type. Consequently, two actions of the same type can be enacted at
the same time, but they must be deliberately designed to do so.

Figure 48 defines some types and functions used in the RATIFY transition system. CCData
is simply an alias to define some functions more easily.

Figure 49 defines the actualVotes function. Given the current state about votes and other
parts of the system it calculates a new mapping of votes, which is the mapping that will actually
be used during ratification. Things such as default votes or resignation/expiry are implemented
in this way.

actualVotes is defined as the union of four voting maps, corresponding to the constitutional
committee, predefined (or auto) DReps, regular DReps and SPOs.

• roleVotes filters the votes based on the given governance role and is a helper for definitions
further down.

• if a CC member has not yet registered a hot key, has expired, or has resigned, then actu-
alCCVote returns abstain; if none of these conditions is met, then

– if the CC member has voted, then that vote is returned;

49

record StakeDistrs : Type where
stakeDistr : VDeleg ⇀ Coin

record RatifyEnv : Type where
stakeDistrs : StakeDistrs
currentEpoch : Epoch
dreps : Credential ⇀ Epoch
ccHotKeys : Credential ⇀ Maybe Credential
treasury : Coin
pools : KeyHash ⇀ PoolParams
delegatees : Credential ⇀ VDeleg

record RatifyState : Type where
es : EnactState
removed : ℙ (GovActionID × GovActionState)
delay : Bool

CCData : Type
CCData = Maybe ((Credential ⇀ Epoch) × ℚ)

govRole : VDeleg → GovRole
govRole (credVoter gv _) = gv
govRole abstainRep = DRep
govRole noConfidenceRep = DRep

IsCC IsDRep IsSPO : VDeleg → Type
IsCC v = govRole v ≡ CC
IsDRep v = govRole v ≡ DRep
IsSPO v = govRole v ≡ SPO

Figure 48: Types and functions for the RATIFY transition system

– if the CC member has not voted, then the default value of no is returned.

• actualDRepVotes adds a default vote of no to all active DReps that didn’t vote.

• actualSPOVotes adds a default vote to all SPOs who didn’t vote, with the default depending
on the action.

Let us discuss the last item above—the way SPO votes are counted—as the ledger specifi-
cation’s handling of this has evolved in response to community feedback. Previously, if an SPO
did not vote, then it would be counted as having voted abstain by default. Members of the
SPO community found this behavior counterintuitive and requested that non-voters be assigned
a no vote by default, with the caveat that an SPO could change its default setting by delegating
its reward account credential to an AlwaysNoConfidence DRep or an AlwaysAbstain DRep.
(This change applies only after the bootstrap period; during the bootstrap period the logic is un-
changed; see Appendix Section C.) To be precise, the agreed upon specification is the following:
an SPO that did not vote is assumed to have vote no, except under the following circumstances:

• if the SPO has delegated its reward credential to an AlwaysNoConfidence DRep, then
their default vote is yes for NoConfidence proposals and no for other proposals;

50

• if the SPO has delegated its reward credential to an AlwaysAbstain DRep, then its default
vote is abstain for all proposals.

It is important to note that the credential that can now be used to set a default voting behavior
is the credential used to withdraw staking rewards, which is not (in general) the same as the
credential used for voting.

Figure 50 defines the accepted and expired functions (together with some helpers) that are
used in the rules of RATIFY.

• getStakeDist computes the stake distribution based on the given governance role and the
corresponding delegations. Note that every constitutional committe member has a stake
of 1, giving them equal voting power. However, just as with other delegation, multiple CC
members can delegate to the same hot key, giving that hot key the power of those multiple
votes with a single actual vote.

• acceptedStakeRatio is the ratio of accepted stake. It is computed as the ratio of yes votes
over the votes that didn’t abstain. The latter is equivalent to the sum of yes and no votes.
The special division symbol /₀ indicates that in case of a division by 0, the numbers 0
should be returned. This implies that in the absence of stake, an action can only pass if
the threshold is also set to 0.

• acceptedBy looks up the threshold in the threshold table and compares it to the result of
acceptedStakeRatio.

• accepted then checks if an action is accepted by all roles; and

• expired checks whether a governance action is expired in a given epoch.

Figure 51 defines functions that deal with delays and the acceptance criterion for ratification.
A given action can either be delayed if the action contained in EnactState isn’t the one the
given action is building on top of, which is checked by verifyPrev, or if a previous action was
a delayingAction. Note that delayingAction affects the future: whenever a delayingAction is
accepted all future actions are delayed. delayed then expresses the condition whether an action
is delayed. This happens either because the previous action doesn’t match the current one, or
because the previous action was a delaying one. This information is passed in as an argument.

The RATIFY transition system is defined as the reflexive-transitive closure of RATIFY’,
which is defined via three rules, defined in Figure 52.

• RATIFY-Accept checks if the votes for a given GovAction meet the threshold required for
acceptance, that the action is accepted and not delayed, and RATIFY-Accept ratifies the
action.

• RATIFY-Reject asserts that the given GovAction is not accepted and expired; it removes
the governance action.

• RATIFY-Continue covers the remaining cases and keeps the GovAction around for further
voting.

Note that all governance actions eventually either get accepted and enacted via RATIFY-
Accept or rejected via RATIFY-Reject. If an action satisfies all criteria to be accepted but cannot
be enacted anyway, it is kept around and tried again at the next epoch boundary.

We never remove actions that do not attract sufficient yes votes before they expire, even if it
is clear to an outside observer that this action will never be enacted. Such an action will simply
keep getting checked every epoch until it expires.

51

actualVotes : RatifyEnv → PParams → CCData → GovAction
→ (GovRole × Credential ⇀ Vote) → (VDeleg ⇀ Vote)

actualVotes Γ pparams cc ga votes
= mapKeys (credVoter CC) actualCCVotes ∪ˡ actualPDRepVotes ga
∪ˡ actualDRepVotes ∪ˡ actualSPOVotes ga
where
roleVotes : GovRole → VDeleg ⇀ Vote
roleVotes r = mapKeys (uncurry credVoter) (filter (λ (x , _) → r ≡ proj₁ x) votes)

activeDReps = dom (filter (λ (_ , e) → currentEpoch ≤ e) dreps)
spos = filter IsSPO (dom (stakeDistr stakeDistrs))

getCCHotCred : Credential × Epoch → Maybe Credential
getCCHotCred (c , e) = case ¿ currentEpoch ≤ e ¿ᵇ , lookupᵐ? ccHotKeys c of

(true , just (just c')) → just c'
_ → nothing -- expired, no hot key or resigned

SPODefaultVote : GovAction → VDeleg → Vote
SPODefaultVote ga (credVoter SPO (KeyHashObj kh)) = case lookupᵐ? pools kh of

nothing → Vote.no
(just p) → case lookupᵐ? delegatees (PoolParams.rewardAddr p) , ga of

(_ , TriggerHF _) → Vote.no
(just noConfidenceRep , NoConfidence) → Vote.yes
(just abstainRep , _) → Vote.abstain
_ → Vote.no

SPODefaultVote _ _ = Vote.no

actualCCVote : Credential → Epoch → Vote
actualCCVote c e = case getCCHotCred (c , e) of

(just c') → maybe id Vote.no (lookupᵐ? votes (CC , c'))
_ → Vote.abstain

actualCCVotes : Credential ⇀ Vote
actualCCVotes = case cc of

nothing → ∅
(just (m , q)) → if ccMinSize ≤ length (mapFromPartialFun getCCHotCred (m))

then mapWithKey actualCCVote m
else constMap (dom m) Vote.no

actualPDRepVotes : GovAction → VDeleg ⇀ Vote
actualPDRepVotes NoConfidence

= ❴ abstainRep , Vote.abstain ❵ ∪ˡ ❴ noConfidenceRep , Vote.yes ❵
actualPDRepVotes _ = ❴ abstainRep , Vote.abstain ❵ ∪ˡ ❴ noConfidenceRep , Vote.no ❵

actualDRepVotes : VDeleg ⇀ Vote
actualDRepVotes = roleVotes DRep

∪ˡ constMap (map (credVoter DRep) activeDReps) Vote.no

actualSPOVotes : GovAction → VDeleg ⇀ Vote
actualSPOVotes a = roleVotes SPO ∪ˡ mapFromFun (SPODefaultVote a) spos

Figure 49: Vote counting

52

getStakeDist : GovRole → ℙ VDeleg → StakeDistrs → VDeleg ⇀ Coin
getStakeDist CC cc sd = constMap (filter IsCC cc) 1
getStakeDist DRep _ sd = filterKeys IsDRep (sd .stakeDistr)
getStakeDist SPO _ sd = filterKeys IsSPO (sd .stakeDistr)

acceptedStakeRatio : GovRole → ℙ VDeleg → StakeDistrs → (VDeleg ⇀ Vote) → ℚ
acceptedStakeRatio r cc dists votes = acceptedStake /₀ totalStake
where
dist : VDeleg ⇀ Coin
dist = getStakeDist r cc dists
acceptedStake totalStake : Coin
acceptedStake = ∑[x ← dist ∣ votes ⁻¹ Vote.yes] x
totalStake = ∑[x ← dist ∣ dom (votes ∣^ (❴ Vote.yes ❵ ∪ ❴ Vote.no ❵))] x

acceptedBy : RatifyEnv → EnactState → GovActionState → GovRole → Type
acceptedBy Γ (record { cc = cc , _; pparams = pparams , _ }) gs role =
let open GovActionState gs; open PParams pparams

votes' = actualVotes Γ pparams cc action votes
mbyT = threshold pparams (proj₂ <$> cc) action role
t = maybe id 0ℚ mbyT

in acceptedStakeRatio role (dom votes') (stakeDistrs Γ) votes' ≥ t
∧ (role ≡ CC → maybe (λ (m , _) → length m) 0 cc ≥ ccMinSize ⊎ Is-nothing mbyT)

accepted : RatifyEnv → EnactState → GovActionState → Type
accepted Γ es gs = acceptedBy Γ es gs CC ∧ acceptedBy Γ es gs DRep ∧ acceptedBy Γ es gs SPO

expired : Epoch → GovActionState → Type
expired current record { expiresIn = expiresIn } = expiresIn < current

Figure 50: Functions used in RATIFY rules, without delay

53

verifyPrev : (a : GovAction) → NeedsHash a → EnactState → Type
verifyPrev NoConfidence h es = h ≡ es .cc .proj₂
verifyPrev (UpdateCommittee _ _ _) h es = h ≡ es .cc .proj₂
verifyPrev (NewConstitution _ _) h es = h ≡ es .constitution .proj₂
verifyPrev (TriggerHF _) h es = h ≡ es .pv .proj₂
verifyPrev (ChangePParams _) h es = h ≡ es .pparams .proj₂
verifyPrev (TreasuryWdrl _) _ _ = ⊤
verifyPrev Info _ _ = ⊤

delayingAction : GovAction → Bool
delayingAction NoConfidence = true
delayingAction (UpdateCommittee _ _ _) = true
delayingAction (NewConstitution _ _) = true
delayingAction (TriggerHF _) = true
delayingAction (ChangePParams _) = false
delayingAction (TreasuryWdrl _) = false
delayingAction Info = false

delayed : (a : GovAction) → NeedsHash a → EnactState → Bool → Type
delayed a h es d = ¬ verifyPrev a h es ⊎ d ≡ true

acceptConds : RatifyEnv → RatifyState → GovActionID × GovActionState → Type

acceptConds Γ
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠
(id , st) = let open RatifyEnv Γ; open GovActionState st in

accepted Γ es st
× ¬ delayed action prevAction es d

× ∃[es']
⎛
⎜
⎜
⎝

id
treasury

currentEpoch

⎞
⎟
⎟
⎠
⊢ es ⇀⦇ action ,ENACT⦈ es'

Figure 51: Functions related to ratification

54

RATIFY-Accept : ∀ {Γ} {es} {removed} {d} {a} {es'} → let open RatifyEnv Γ; st = a .proj₂; open GovActionState st in

∙ acceptConds Γ
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠
a

∙
⎛
⎜
⎜
⎝

a .proj₁
treasury

currentEpoch

⎞
⎟
⎟
⎠
⊢ es ⇀⦇ action ,ENACT⦈ es'

────────────────────────────────

Γ ⊢
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠

⇀⦇ a ,RATIFY'⦈
⎛
⎜
⎜
⎝

es'
❴ a ❵ ∪ removed

delayingAction action

⎞
⎟
⎟
⎠

RATIFY-Reject : ∀ {Γ} {es} {removed} {d} {a} → let open RatifyEnv Γ; st = a .proj₂ in

∙ ¬ acceptConds Γ
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠
a

∙ expired currentEpoch st
────────────────────────────────

Γ ⊢
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠

⇀⦇ a ,RATIFY'⦈
⎛
⎜
⎜
⎝

es
❴ a ❵ ∪ removed

d

⎞
⎟
⎟
⎠

RATIFY-Continue : ∀ {Γ} {es} {removed} {d} {a} → let open RatifyEnv Γ; st = a .proj₂ in

∙ ¬ acceptConds Γ
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠
a

∙ ¬ expired currentEpoch st
────────────────────────────────

Γ ⊢
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠

⇀⦇ a ,RATIFY'⦈
⎛
⎜
⎜
⎝

es
removed

d

⎞
⎟
⎟
⎠

⊢⇀⦇_,RATIFY⦈_ : RatifyEnv → RatifyState → List (GovActionID × GovActionState)
→ RatifyState → Type

⊢⇀⦇_,RATIFY⦈_ = ReflexiveTransitiveClosure {sts = _⊢_⇀⦇_,RATIFY'⦈_}

Figure 52: The RATIFY transition system

55

17 Epoch Boundary

record RewardUpdate : Set where
constructor ⟦_,_,_,_⟧ʳᵘ
field
Δt Δr Δf : ℤ
rs : Credential ⇀ Coin

record Snapshot : Set where
constructor ⟦_,_⟧
field
stake : Credential ⇀ Coin
delegations : Credential ⇀ KeyHash
-- poolParameters : KeyHash ⇀ PoolParam

record Snapshots : Set where
constructor ⟦_,_,_,_⟧
field
mark set go : Snapshot
feeSS : Coin

record EpochState : Type where
acnt : Acnt
ss : Snapshots
ls : LState
es : EnactState
fut : RatifyState

record NewEpochState : Type where
lastEpoch : Epoch
epochState : EpochState
ru : Maybe RewardUpdate

Figure 53: Definitions for the EPOCH and NEWEPOCH transition systems

applyRUpd : RewardUpdate → EpochState → EpochState

56

applyRUpd
⎛
⎜
⎜
⎜
⎝

Δt
Δr
Δf
rs

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
treasury
reserves)

ss
⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

utxo
fees

deposits
donations

⎞
⎟
⎟
⎟
⎠

govSt
⎛
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

voteDelegs
stakeDelegs
rewards

⎞
⎟
⎟
⎠

pState
gState

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

es
fut

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(
posPart (ℤ.+ treasury ℤ.+ Δt ℤ.+ ℤ.+ unregRU')

posPart (ℤ.+ reserves ℤ.+ Δr))
ss

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎜
⎝

utxo
posPart (ℤ.+ fees ℤ.+ Δf)

deposits
donations

⎞
⎟
⎟
⎟
⎠

govSt
⎛
⎜
⎜
⎜
⎜
⎝

⎛
⎜
⎜
⎝

voteDelegs
stakeDelegs

rewards ∪⁺ regRU

⎞
⎟
⎟
⎠

pState
gState

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

es
fut

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where
regRU = rs ∣ dom rewards
unregRU = rs ∣ dom rewards ᶜ
unregRU' = ∑[x ← unregRU] x

getOrphans : EnactState → GovState → GovState
getOrphans es govSt = proj₁ $ iterate step ([] , govSt) (length govSt)
where
step : GovState × GovState → GovState × GovState
step (orps , govSt) =
let
isOrphan? a prev = ¬? (hasParent? es govSt a prev)
(orps' , govSt') = partition
(λ (_ , record {action = a ; prevAction = prev}) → isOrphan? a prev) govSt

in
(orps ++ orps' , govSt')

data _⊢_⇀⦇_,SNAP⦈_ : LState → Snapshots → ⊤ → Snapshots → Type where
SNAP : let open LState lstate; open UTxOState utxoSt; open CertState certState

stake = stakeDistr utxo dState pState
in

lstate ⊢
⎛
⎜
⎜
⎜
⎝

mark
set
go

feeSS

⎞
⎟
⎟
⎟
⎠

⇀⦇ tt ,SNAP⦈
⎛
⎜
⎜
⎜
⎝

stake
mark
set
fees

⎞
⎟
⎟
⎟
⎠

data _⊢_⇀⦇_,EPOCH⦈_ : ⊤ → EpochState → Epoch → EpochState → Type where

Figure 55 defines the rule for the EPOCH transition system. Currently, this contains some
logic that is handled by POOLREAP in the Shelley specification, since POOLREAP is not
implemented here.

The EPOCH rule now also needs to invoke RATIFY and properly deal with its results by
carrying out each of the following tasks.

57

stakeDistr : UTxO → DState → PState → Snapshot

stakeDistr utxo
⎛
⎜
⎜
⎝

_
stakeDelegs
rewards

⎞
⎟
⎟
⎠
pState = (

aggregate₊ (stakeRelation ᶠ)
stakeDelegs)

where
m = map (λ a → (a , cbalance (utxo ∣^' λ i → getStakeCred i ≡ just a))) (dom rewards)
stakeRelation = m ∪ proj₁ rewards

gaDepositStake : GovState → Deposits → Credential ⇀ Coin
gaDepositStake govSt ds = aggregateBy
(map (λ (gaid , addr) → (gaid , addr) , stake addr) govSt')
(mapFromPartialFun (λ (gaid , _) → lookupᵐ? ds (GovActionDeposit gaid)) govSt')
where govSt' = map (map₂ returnAddr) (fromList govSt)

mkStakeDistrs : Snapshot → GovState → Deposits → (Credential ⇀ VDeleg) → StakeDistrs

mkStakeDistrs (
stake

_) govSt ds delegations .StakeDistrs.stakeDistr =

aggregateBy (proj₁ delegations) (stake ∪⁺ gaDepositStake govSt ds)

Figure 54: Functions for computing stake distributions

• Pay out all the enacted treasury withdrawals.

• Remove expired and enacted governance actions & refund deposits.

• If govSt' is empty, increment the activity counter for DReps.

• Remove all hot keys from the constitutional committee delegation map that do not belong
to currently elected members.

• Apply the resulting enact state from the previous epoch boundary fut and store the
resulting enact state fut'.

58

EPOCH : let

(esW removed _)
𝑇 = fut ;

⎛
⎜
⎜
⎝

utxoSt govSt
⎛
⎜
⎜
⎝

dState
pState
gState

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

𝑇

= ls

es = record esW { withdrawals = ∅ }
tmpGovSt = filter (λ x → ¿ proj₁ x ∉ map proj₁ removed ¿) govSt
orphans = fromList $ getOrphans es tmpGovSt
removed' = removed ∪ orphans
removedGovActions = flip concatMap removed' λ (gaid , gaSt) →
map (returnAddr gaSt ,_) ((utxoSt .deposits ∣ ❴ GovActionDeposit gaid ❵))

govActionReturns = aggregate₊ (map (λ (a , _ , d) → a , d) removedGovActions ᶠ)

trWithdrawals = esW .withdrawals
totWithdrawals = ∑[x ← trWithdrawals] x

retired = (pState .retiring) ⁻¹ e
payout = govActionReturns ∪⁺ trWithdrawals
refunds = pullbackMap payout toRwdAddr (dom (dState .rewards))
unclaimed = getCoin payout - getCoin refunds

govSt' = filter (λ x → ¿ proj₁ x ∉ map proj₁ removed' ¿) govSt

certState' =
⎛
⎜
⎜
⎜
⎜
⎝

record dState { rewards = dState .rewards ∪⁺ refunds }

(
(pState .pools) ∣ retired ᶜ

(pState .retiring) ∣ retired ᶜ)

(
if null govSt' then mapValues (1 +_) (gState .dreps) else (gState .dreps)

(gState .ccHotKeys) ∣ ccCreds (es .cc))

⎞
⎟
⎟
⎟
⎟
⎠

utxoSt' =
⎛
⎜
⎜
⎜
⎝

utxoSt .utxo
utxoSt .fees

utxoSt .deposits ∣ map (proj₁ ∘ proj₂) removedGovActions ᶜ
0

⎞
⎟
⎟
⎟
⎠

acnt' = record acnt
{ treasury = acnt .treasury ∸ totWithdrawals + utxoSt .donations + unclaimed }

in
record { currentEpoch = e

; stakeDistrs = mkStakeDistrs (Snapshots.mark ss') govSt'
(utxoSt' .deposits) (voteDelegs dState)

; treasury = acnt .treasury ; GState gState
; pools = pState .pools ; delegatees = dState .voteDelegs }

⊢ (es ∅ false)
𝑇 ⇀⦇ govSt' ,RATIFY⦈ fut'

→ ls ⊢ ss ⇀⦇ tt ,SNAP⦈ ss'
────────────────────────────────

_ ⊢

⎛
⎜
⎜
⎜
⎜
⎝

acnt
ss
ls
es₀
fut

⎞
⎟
⎟
⎟
⎟
⎠

⇀⦇ e ,EPOCH⦈

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

acnt'
ss'

⎛
⎜
⎜
⎝

utxoSt'
govSt'

certState'

⎞
⎟
⎟
⎠

es
fut'

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 55: EPOCH transition system

59

⊢⇀⦇_,NEWEPOCH⦈_ : ⊤ → NewEpochState → Epoch → NewEpochState → Type

NEWEPOCH-New : let
eps' = applyRUpd ru eps

in
∙ e ≡ lastEpoch + 1
∙ _ ⊢ eps' ⇀⦇ e ,EPOCH⦈ eps''
────────────────────────────────

_ ⊢
⎛
⎜
⎜
⎝

lastEpoch
eps

just ru

⎞
⎟
⎟
⎠

⇀⦇ e ,NEWEPOCH⦈
⎛
⎜
⎜
⎝

e
eps''
nothing

⎞
⎟
⎟
⎠

NEWEPOCH-Not-New :
∙ e ≢ lastEpoch + 1
────────────────────────────────

_ ⊢
⎛
⎜
⎜
⎝

lastEpoch
eps
mru

⎞
⎟
⎟
⎠

⇀⦇ e ,NEWEPOCH⦈
⎛
⎜
⎜
⎝

lastEpoch
eps
mru

⎞
⎟
⎟
⎠

NEWEPOCH-No-Reward-Update :
∙ e ≡ lastEpoch + 1
∙ _ ⊢ eps ⇀⦇ e ,EPOCH⦈ eps'
────────────────────────────────

_ ⊢
⎛
⎜
⎜
⎝

lastEpoch
eps

nothing

⎞
⎟
⎟
⎠

⇀⦇ e ,NEWEPOCH⦈
⎛
⎜
⎜
⎝

e
eps'

nothing

⎞
⎟
⎟
⎠

Figure 56: NEWEPOCH transition system

60

18 Blockchain Layer

record ChainState : Type where
newEpochState : NewEpochState

record Block : Type where
ts : List Tx
slot : Slot

Figure 57: Definitions CHAIN transition system

⊢⇀⦇_,CHAIN⦈_ : ⊤ → ChainState → Block → ChainState → Type

Figure 58: Type of the CHAIN transition system

CHAIN :
totalRefScriptsSize ls ts ≤ maxRefScriptSizePerBlock
→ _ ⊢ newEpochState ⇀⦇ epoch slot ,NEWEPOCH⦈ nes

→

⎛
⎜
⎜
⎜
⎜
⎝

slot
constitution .proj₁ .proj₂

pp
es

Acnt.treasury acnt

⎞
⎟
⎟
⎟
⎟
⎠

⊢ ls ⇀⦇ ts ,LEDGERS⦈ ls'

────────────────────────────────
_ ⊢ s ⇀⦇ b ,CHAIN⦈ record s { newEpochState =

record nes { epochState =
record epochState { ls = ls'} } }

Figure 59: CHAIN transition system

61

19 Properties
19.1 UTxO
Here, we state the fact that the UTxO relation is computable.

UTXO-step : UTxOEnv → UTxOState → Tx → ComputationResult String UTxOState
UTXO-step = compute ⦃ Computational-UTXO ⦄

UTXO-step-computes-UTXO : UTXO-step Γ utxoState tx ≡ success utxoState'
⇔ Γ ⊢ utxoState ⇀⦇ tx ,UTXO⦈ utxoState'

UTXO-step-computes-UTXO = ≡-success⇔STS ⦃ Computational-UTXO ⦄

Figure 60: Computing the UTXO transition system

Property 19.1 (Preserve Balance)
For all Γ ∈ UTxOEnv, utxo, utxo' ∈ UTxO, fees, fees' ∈ Coin and tx ∈ Tx,

if

txid ∉ map proj₁ (dom utxo)
and

Γ ⊢ ⟦ utxo , fees , deposits , donations ⟧ᵘ ⇀⦇ tx ,UTXO⦈
⟦ utxo' , fees' , deposits' , donations' ⟧ᵘ

then

getCoin ⟦ utxo , fees , deposits , donations ⟧ᵘ + φ(getCoin txwdrls , isValid)
≡ getCoin ⟦ utxo' , fees' , deposits' , donations' ⟧ᵘ

Property 19.2 (General Minimum Spending Condition)

References
[1] Agda development team. Agda 2.6.4 documentation. https://agda.readthedocs.io/en/

v2.6.4/, December 2023.

[2] J. Corduan, A. Knispel, M. Benkort, K. Hammond, C. Hoskinson, and S. Leathers. A
first step towards on-chain decentralized governance. https://cips.cardano.org/cip/
CIP-1694, 2023.

[3] J. Corduan, P. Vinogradova, and M. Güdemann. A Formal Specification of the Car-
dano Ledger. https://github.com/intersectmbo/cardano-ledger/releases/latest/
download/shelley-ledger.pdf, 2019. Accessed: 2024-07-30.

[4] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s type the-
ory: An introduction. https://www.cse.chalmers.se/research/group/logic/book/
book.pdf, July 1990. Previously published as [5].

[5] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf’s Type Theory:
An Introduction. International series of monographs on computer science. Clarendon Press;
Oxford University Press, July 1990.

62

https://agda.readthedocs.io/en/v2.6.4/
https://agda.readthedocs.io/en/v2.6.4/
https://cips.cardano.org/cip/CIP-1694
https://cips.cardano.org/cip/CIP-1694
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://www.cse.chalmers.se/research/group/logic/book/book.pdf
https://www.cse.chalmers.se/research/group/logic/book/book.pdf

A Agda Essentials
Here we describe some of the essential concepts and syntax of the Agda programming language
and proof assistant. The goal is to provide some background for readers who are not already
familiar with Agda, to help them understand the other sections of the specification.

A.1 Record Types
A record is a product with named accessors for the individual fields. It provides a way to define
a type that groups together inhabitants of other types.

Example.

record Pair (A B : Type) : Type where
constructor ⦅_,_⦆
field
fst : A
snd : B

We can construct an element of the type Pair ℕ ℕ (i.e., a pair of natural numbers) as follows:

p23 : Pair ℕ ℕ
p23 = record { fst = 2; snd = 3 }

Since our definition of the Pair type provides an (optional) constructor ⦅_,_⦆, we can have
defined p23 as follows:

p23' : Pair ℕ ℕ
p23' = ⦅ 2 , 3 ⦆

Finally, we can “update” a record by deriving from it a new record whose fields may contain
new values. The syntax is best explained by way of example.

p24 : Pair ℕ ℕ
p24 = record p23 { snd = 4 }

This results a new record, p24, which denotes the pair ⦅ 2 , 4 ⦆.

See also https://agda.readthedocs.io/en/v2.6.4/language/record-types.

B Bootstrapping EnactState
To form an EnactState, some governance action IDs need to be provided. However, at the time
of the initial hard fork into Conway there are no such previous actions. There are effectively
two ways to solve this issue:

• populate those fields with IDs chosen in some manner (e.g. random, all zeros, etc.), or

• add a special value to the types to indicate this situation.

In the Haskell implementation the latter solution was chosen. This means that everything
that deals with GovActionID needs to be aware of this special case and handle it properly.

This specification could have mirrored this choice, but it is not necessary here: since it is
already necessary to assume the absence of hash-collisions (specifically first pre-image resistance)
for various properties, we could pick arbitrary initial values to mirror this situation. Then, since
GovActionID contains a hash, that arbitrary initial value behaves just like a special case.

63

https://agda.readthedocs.io/en/v2.6.4/language/record-types

C Bootstrapping the Governance System
As described in [2], the governance system needs to be bootstrapped. During the bootstrap
period, the following changes will be made to the ledger described in this document.

• Transactions containing any proposal except TriggerHF, ChangePParams or Info will be
rejected.

• Transactions containing a vote other than a CC vote, a SPO vote on a TriggerHF action or
any vote on an Info action will be rejected.

• Q4, P5 and Q5e are set to 0.

• An SPO that does not vote is assumed to have voted abstain.

This allows for a governance mechanism similar to the old, Shelley-era governance during
the bootstrap phase, where the constitutional committee is mostly in charge. These restrictions
will be removed during a subsequent hard fork, once enough DRep stake is present in the system
to properly govern and secure itself.

64

	Introduction
	A Note on Agda
	Separation of Concerns
	Reflexive-transitive Closure
	Computational
	Sets & Maps
	Propositions as Types, Properties and Relations
	Superscripts and Other Special Notations

	Notation
	Cryptographic Primitives
	Base Types
	Token Algebras
	Addresses
	Scripts
	Protocol Parameters
	Governance Actions
	Hash Protection
	Votes and Proposals

	Transactions
	UTxO
	Accounting
	Witnessing
	Plutus script context

	Governance
	Certificates
	Removal of Pointer Addresses, Genesis Delegations and MIR Certificates
	Explicit Deposits
	Delegation
	Governance Certificate Rules

	Ledger State Transition
	Enactment
	Ratification
	Ratification Requirements
	Protocol Parameters and Governance Actions
	Ratification Restrictions

	Epoch Boundary
	Blockchain Layer
	Properties
	UTxO

	Agda Essentials
	Record Types

	Bootstrapping EnactState
	Bootstrapping the Governance System

