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Abstract

This document presents the modifications to the previous specifications of the Cardano
ledger (see [1], [2], [3], [4]) for the Conway era. The additions mostly relate to the imple-
mentation of the governance framework described in CIP-1694 [5].
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1 Introduction
This is the specification of the Conway era of the Cardano ledger. As with previous specifications,
this document is an incremental specification, so everything that isn’t defined here refers to the
most recent definition from an older specification.

Note: As of now, this specification is still a draft. Some details and explanations may be
missing or wrong.

1.1 A Note on Agda
This specification is written using the Agda programming language and proof assistant [6]. We
have made a considerable effort to ensure that this document is readable by people unfamiliar
with Agda (or other proof assistants, functional programming languages, etc.). However, by
the nature of working in a formal language we have to play by its rules, meaning that some
instances of uncommon notation are very difficult or impossible to avoid. Some are explained in
Secs. A and 2, but there is no guarantee that those sections are complete. If the meaning of an
expression is confusing or unclear, please open an issue in the formal ledger GitHub repository
with the ‘notation’ label.

1.2 Separation of Concerns
The Cardano Node consists of three pieces,

• a networking layer responsible for sending messages across the internet,
• a consensus layer establishing a common order of valid blocks, and
• a ledger layer which determines whether a sequence of blocks is valid.

Because of this separation, the ledger gets to be a state machine,

𝑠 𝑏−→
𝑋

𝑠′.

More generally, we will consider state machines with an environment,

Γ ⊢ 𝑠 𝑏−→
𝑋

𝑠′.

These are modelled as 4-ary relations between the environment Γ, an initial state 𝑠, a signal 𝑏
and a final state 𝑠′. The ledger consists of roughly 25 (depending on the version) such relations
that depend on each other, forming a directed graph that is almost a tree. Thus each such
relation represents the transition rule of the state machine; 𝑋 is simply a placeholder for the
name of the transition rule.

1.3 Reflexive-transitive Closure
Some state transition rules need to be applied as many times as possible to arrive at a final state.
Since we use this pattern multiple times, we define a closure operation which takes a transition
rule and applies it as many times as possible.

The closure _⊢_⇀⟦_⟧*_ of a relation _⊢_⇀⟦_⟧_ is defined in Fig. 1. In the remainder of the
text, the closure operation is called ReflexiveTransitiveClosure.
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module _ (_⊢_⇀⟦_⟧_ : C → S → Sig → S → Type) where

Closure type
data _⊢_⇀⟦_⟧*_ : C → S → List Sig → S → Type where

Closure rules
RTC-base :
Γ ⊢ s ⇀⟦ [] ⟧* s

RTC-ind :
∙ Γ ⊢ s ⇀⟦ sig ⟧ s'
∙ Γ ⊢ s' ⇀⟦ sigs ⟧* s''
───────────────────────────────────────
Γ ⊢ s ⇀⟦ sig ∷ sigs ⟧* s''

Figure 1: Reflexive transitive closure

record Computational (_⊢_⇀⦇_,X⦈_ : C → S → Sig → S → Type) : Type where
field
compute : C → S → Sig → Maybe S
≡-just⇔STS : compute Γ s b ≡ just s' ⇔ Γ ⊢ s ⇀⦇ b ,X⦈ s'

nothing⇒∀¬STS : compute Γ s b ≡ nothing → ∀ s' → ¬ Γ ⊢ s ⇀⦇ b ,X⦈ s'

Figure 2: Computational relations

1.4 Computational
Since all such state machines need to be evaluated by the nodes and all nodes should compute
the same states, the relations specified by them should be computable by functions. This can
be captured by the definition in Fig. 2 which is parametrized over the state transition relation.

Unpacking this, we have a compute function that computes a final state from a given envi-
ronment, state and signal. The second piece is correctness: compute succeeds with some final
state if and only if that final state is in relation to the inputs.

This has two further implications:

• Since compute is a function, the state transition relation is necessarily a (partial) function;
i.e., there is at most one possible final state for each input data. Otherwise, we could
prove that compute could evaluates to two different states on the same inputs, which is
impossible since it is a function.

• The actual definition of compute is irrelevant—any two implementations of compute have to
produce the same result on any input. This is because we can simply chain the equivalences
for two different compute functions together.

What this all means in the end is that if we give a Computational instance for every relation
defined in the ledger, we also have an executable version of the rules which is guaranteed to be
correct. This is indeed something we have done, and the same source code that generates this
document also generates a Haskell library that lets anyone run this code.
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1.5 Sets & Maps
The ledger heavily uses set theory. For various reasons it was necessary to implement our own
set theory (there will be a paper on this some time in the future). Crucially, the set theory
is completely abstract (in a technical sense—Agda has an abstract keyword) meaning that
implementation details of the set theory are irrelevant. Additionally, all sets in this specification
are finite.

We use this set theory to define maps as seen below, which are used in many places. We
usually think of maps as partial functions (i.e., functions not necessarily defined everywhere—
equivalently, ”left-unique” relations) and we use the harpoon arrow ⇀ to distinguish such maps
from standard Agda functions which use →. The figure below also gives notation for the powerset
operation, ℙ, used to form a type of sets with elements in a given type, as well as the subset
relation and the equality relation for sets.

_⊆_ : {A : Type} → ℙ A → ℙ A → Type
X ⊆ Y = ∀ {x} → x ∈ X → x ∈ Y

_≡ᵉ_ : {A : Type} → ℙ A → ℙ A → Type
X ≡ᵉ Y = X ⊆ Y × Y ⊆ X

Rel : Type → Type → Type
Rel A B = ℙ (A × B)

left-unique : {A B : Type} → Rel A B → Type
left-unique R = ∀ {a b b'} → (a , b) ∈ R → (a , b') ∈ R → b ≡ b'

_⇀_ : Type → Type → Type
A ⇀ B = r ∈ Rel A B ﹐ left-unique r

1.6 Propositions as Types, Properties and Relations
In type theory we represent propositions as types and proofs of a proposition as elements of
the corresponding type. A unary predicate is a function that takes each x (of some type A) and
returns a proposition P(x). Thus, a predicate is a function of type A → Type. A binary relation
R between A and B is a function that takes a pair of values x and y and returns a proposition
asserting that the relation R holds between x and y. Thus, such a relation is a function of type
A × B → Type or A → B → Type.

2 Notation
This section introduces some of the notation we use in this document and in our Agda formal-
ization.

Propositions, sets and types. In this document the abstract notions of “set” and “type” are
essentially the same, despite having different formal definitions in our Agda code. We
represent sets as a special type, which we denote by Set A, for A an arbitrary type. (See
Sec. 1.5 for details and Nordström et al. [7, Ch. 19] for background.) Agda denotes the
primitive notion of type by Set. To avoid confusion, throughout this document and in
our Agda code we call this primitive Type, reserving the name Set for our set type. All of
our sets are finite, and when we need to convert a list l to its set of elements, we write
fromList l.
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Lists We use the notation a ∷ as for the list with head a and tail as; [] denotes the empty list,
and l ∷ʳ x appends the element x to the end of the list l.

Sums and products. The sum (or disjoint union, coproduct, etc.) of A and B is denoted by
A ⊎ B, and their product is denoted by A × B. The projection functions from products are
denoted proj₁ and proj₂, and the injections are denoted inj₁ and inj₂ respectively. The
properties whether an element of a coproduct is in the left or right component are called
isInj₁ and isInj₂.

Addition of map values. The expression ∑[ x ← m ] f x denotes the sum of the values obtained
by applying the function f to the values of the map m.

Record types are explained in Sec. A.

Postfix projections. Projections can be written using postfix notation. For example, we may
write x .proj₁ instead of proj₁ x.

Restriction, corestriction and complements. The restriction of a function or map f to
some domain A is denoted by f | A, and the restriction to the complement of A is written
f | A ᶜ. Corestriction or range restriction is denoted similarly, except that | is replaced by
∣^.

Inverse image. The expression m ⁻¹ B denotes the inverse image of the set B under the map m.

Left-biased union. For maps m and m', we write m ∪ˡ m' for their left-biased union. This means
that key-value pairs in m are guaranteed to be in the union, while key-value pairs in m' will
be in the union if and only if the keys don’t collide.

Map addition. For maps m and m', we write m ∪⁺ m' for their union, where keys that appear
in both maps have their corresponding values added.

Mapping a partial function. A partial function is a function on A which may not be defined
for all elements of A. We denote such a function by f : A ⇀ B. If we happen to know
that the function is total (defined for all elements of A), then we write f : A → B. The
mapPartialoperation takes such a function f and a set S of elements of A and applies f to the
elements of S at which it is defined; the result is the set {f x ∣ x ∈ S and f is defined at x}.

The Maybe type represents an optional value and can either be just x (indicating the presence
of a value, x) or nothing (indicating the absence of a value). If x has type X, then just x
has type Maybe X.
The symbol ∼ denotes (pseudo)equality of two values x and y of type Maybe X: if x is of the
form just x' and y is of the form just y', then x' and y' have to be equal. Otherwise,
they are considered “equal”.

The unit type ⊤ has a single inhabitant tt and may be thought of as a type that carries no
information; it is useful for signifying the completion of an action, the presence of a trivial
value, a trivially satisfied requirement, etc.

2.1 Superscripts and Other Special Notations
In the current version of this specification, superscript letters are heavily used for things such
as disambiguations or type conversions. These are essentially meaningless, only present for
technical reasons and can safely be ignored. However there are the two exceptions:

• ∪ˡ for left-biased union
• ᶜ in the context of set restrictions, where it indicates the complement
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Also, non-letter superscripts do carry meaning.1
Finally, there are some ? and ¿ operations. These relate to decision procedures and can also

safely be ignored.2

1At some point in the future we hope to be able to remove all those non-essential superscripts. Since we prefer
doing this by changing the Agda source code instead of via hiding them in this document, this is a non-trivial
problem that will take some time to address.

2We plan on refactoring the code so that these special symbols will also disappear from this document.
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3 Protocol Parameters
This section is part of the Ledger.PParams module of the formal ledger specification, in which
we define the adjustable protocol parameters of the Cardano ledger.

Protocol parameters are used in block validation and can affect various features of the system,
such as minimum fees, maximum and minimum sizes of certain components, and more.

data PParamGroup : Type where
NetworkGroup : PParamGroup
EconomicGroup : PParamGroup
TechnicalGroup : PParamGroup
GovernanceGroup : PParamGroup
SecurityGroup : PParamGroup

Figure 3: Protocol parameter group definition

record DrepThresholds : Type where
field
P1 P2a P2b P3 P4 P5a P5b P5c P5d P6 : ℚ

record PoolThresholds : Type where
field
Q1 Q2a Q2b Q4 Q5 : ℚ

Figure 4: Protocol parameter threshold definitions

PParams contains parameters used in the Cardano ledger, which we group according to the
general purpose that each parameter serves.

• NetworkGroup: parameters related to the network settings;
• EconomicGroup: parameters related to the economic aspects of the ledger;
• TechnicalGroup: parameters related to technical settings;
• GovernanceGroup: parameters related to governance settings;
• SecurityGroup: parameters that can impact the security of the system.

The purpose of these groups is to determine voting thresholds for proposals aiming to change
parameters. Given a proposal to change a certain set of parameters, we look at which groups
those parameters fall into and from this we determine the voting threshold for that proposal.
(The voting threshold calculation is described in detail in Sec. 12.1; in particular, the definition
of the threshold function appears in Fig. 41.)

The first four groups have the property that every protocol parameter is associated to pre-
cisely one of these groups. The SecurityGroup is special: a protocol parameter may or may not
be in the SecurityGroup. So, each protocol parameter belongs to at least one and at most two
groups. Note that in CIP-1694 there is no SecurityGroup, but there is the concept of security-
relevant protocol parameters (see Corduan et al. [5]). The difference between these notions is
only social, so we implement security-relevant protocol parameters as a group.

The new protocol parameters are declared in Fig. 5 and denote the following concepts:
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• drepThresholds: governance thresholds for DReps; these are rational numbers named P1,
P2a, P2b, P3, P4, P5a, P5b, P5c, P5d, and P6;

• poolThresholds: pool-related governance thresholds; these are rational numbers named
Q1, Q2a, Q2b, Q4 and Q5;

• ccMinSize: minimum constitutional committee size;
• ccMaxTermLength: maximum term limit (in epochs) of constitutional committee members;
• govActionLifetime: governance action expiration;
• govActionDeposit: governance action deposit;
• drepDeposit: DRep deposit amount;
• drepActivity: DRep activity period;
• minimumAVS: the minimum active voting threshold.

Fig. 5 also defines the function paramsWellFormed which performs some sanity checks on protocol
parameters. Fig. 7 defines types and functions to update parameters. These consist of an
abstract type UpdateT and two functions applyUpdate and updateGroups. The type UpdateT is to
be instantiated by a type that

• can be used to update parameters, via the function applyUpdate
• can be queried about what parameter groups it updates, via the function updateGroups

An element of the type UpdateT is well formed if it updates at least one group and applying the
update preserves well-formedness.
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record PParams : Type where
field

Network group
maxBlockSize : ℕ
maxTxSize : ℕ
maxHeaderSize : ℕ
maxTxExUnits : ExUnits
maxBlockExUnits : ExUnits
maxValSize : ℕ
maxCollateralInputs : ℕ

Economic group
a : ℕ
b : ℕ
keyDeposit : Coin
poolDeposit : Coin
monetaryExpansion : UnitInterval -- formerly: rho
treasuryCut : UnitInterval -- formerly: tau
coinsPerUTxOByte : Coin
prices : Prices
minFeeRefScriptCoinsPerByte : ℚ
maxRefScriptSizePerTx : ℕ
maxRefScriptSizePerBlock : ℕ
refScriptCostStride : ℕ
refScriptCostMultiplier : ℚ

Technical group
Emax : Epoch
nopt : ℕ
a0 : ℚ
collateralPercentage : ℕ
costmdls : CostModel

Governance group
poolThresholds : PoolThresholds
drepThresholds : DrepThresholds
ccMinSize : ℕ
ccMaxTermLength : ℕ
govActionLifetime : ℕ
govActionDeposit : Coin
drepDeposit : Coin
drepActivity : Epoch

Security group
maxBlockSize maxTxSize maxHeaderSize maxValSize maxBlockExUnits a b minFeeRefScript-
CoinsPerByte coinsPerUTxOByte govActionDeposit

Figure 5: Protocol parameter definitions
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positivePParams : PParams → List ℕ
positivePParams pp = ( maxBlockSize ∷ maxTxSize ∷ maxHeaderSize

∷ maxValSize ∷ refScriptCostStride ∷ coinsPerUTxOByte
∷ poolDeposit ∷ collateralPercentage ∷ ccMaxTermLength
∷ govActionLifetime ∷ govActionDeposit ∷ drepDeposit ∷ [] )

paramsWellFormed : PParams → Type
paramsWellFormed pp = 0 ∉ fromList (positivePParams pp)

Figure 6: Protocol parameter well-formedness

Abstract types & functions

UpdateT : Type
applyUpdate : PParams → UpdateT → PParams
updateGroups : UpdateT → ℙ PParamGroup

Well-formedness condition

ppdWellFormed : UpdateT → Type
ppdWellFormed u = updateGroups u ≢ ∅
× ∀ pp → paramsWellFormed pp → paramsWellFormed (applyUpdate pp u)

Figure 7: Abstract type for parameter updates
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scriptsCost : (pp : PParams) → ℕ → Coin
scriptsCost pp scriptSize
= scriptsCostAux 0ℚ minFeeRefScriptCoinsPerByte scriptSize

scriptsCostAux : ℚ -- accumulator
→ ℚ -- current tier price
→ (n : ℕ) -- remaining script size
→ Coin

scriptsCostAux acl curTierPrice n
= case n ≤? refScriptCostStride of λ where

(yes _) → ∣ floor (acl + (fromℕ n * curTierPrice)) ∣
(no p) → scriptsCostAux (acl + (fromℕ refScriptCostStride * curTierPrice))

(refScriptCostMultiplier * curTierPrice)
(n - refScriptCostStride)

Figure 8: Calculation of fees for reference scripts

4 Fee Calculation
This section is part of the Ledger.Fees module of the formal ledger specification, where we define
the functions used to compute the fees associated with reference scripts.

The function scriptsCost (Fig. 8) calculates the fee for reference scripts in a transaction.
It takes as input the total size of the reference scripts in bytes—which can be calculated using
refScriptsSize (Fig. 17)—and uses a function (scriptsCostAux) that is piece-wise linear in
the size, where the linear constant multiple grows with each refScriptCostStride bytes. In
addition, scriptsCost depends on the following constants (which are bundled with the protocol
parameters; see Fig. 5):

• refScriptCostMultiplier, a rational number, the growth factor or step multiplier that
determines how much the price per byte increases after each increment;

• refScriptCostStride, an integer, the size in bytes at which the price per byte grows lin-
early;

• minFeeRefScriptCoinsPerByte, a rational number, the base fee or initial price per byte.
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5 Governance Actions
This section is part of the Ledger.GovernanceActions module of the formal ledger specification.

We introduce the following distinct bodies with specific functions in the new governance
framework:

1. a constitutional committee (henceforth called CC);
2. a group of delegate representatives (henceforth called DReps);
3. the stake pool operators (henceforth called SPOs).

Fig. 9 defines several data types used to represent governance actions. The type DocHash
is abstract but in the implementation it will be instantiated with a 32-bit hash type (like e.g.
ScriptHash). We keep it separate because it is used for a different purpose.

• GovActionID: a unique identifier for a governance action, consisting of the TxId of the
proposing transaction and an index to identify a proposal within a transaction;

• GovRole (governance role): one of three available voter roles defined above (CC, DRep, SPO);
• VDeleg (voter delegation): one of three ways to delegate votes: by credential, abstention,

or no confidence (credVoter, abstainRep, or noConfidenceRep);
• Anchor: a url and a document hash;
• GovAction (governance action): one of seven possible actions (see Fig. 10 for definitions);

The governance actions carry the following information:

• UpdateCommittee: a map of credentials and terms to add and a set of credentials to remove
from the committee;

• NewConstitution: a hash of the new constitution document and an optional proposal
policy;

• TriggerHF: the protocol version of the epoch to hard fork into;
• ChangePParams: the updates to the parameters; and
• TreasuryWdrl: a map of withdrawals.

5.1 Hash Protection
For some governance actions, in addition to obtaining the necessary votes, enactment requires
that the following condition is also satisfied: the state obtained by enacting the proposal is in
fact the state that was intended when the proposal was submitted. This is achieved by requiring
actions to unambiguously link to the state they are modifying via a pointer to the previous
modification. A proposal can only be enacted if it contains the GovActionID of the previously
enacted proposal modifying the same piece of state. NoConfidence and UpdateCommittee modify
the same state, while every other type of governance action has its own state that isn’t shared
with any other action. This means that the enactibility of a proposal can change when other
proposals are enacted.

However, not all types of governance actions require this strict protection. For TreasuryWdrl
and Info, enacting them does not change the state in non-commutative ways, so they can always
be enacted.

Types related to this hash protection scheme are defined in Fig. 11.
3There are many varying definitions of the term “hard fork” in the blockchain industry. Hard forks typically

refer to non-backwards compatible updates of a network. In Cardano, we attach a bit more meaning to the
definition by calling any upgrade that would lead to more blocks being validated a “hard fork” and force nodes to
comply with the new protocol version, effectively rendering a node obsolete if it is unable to handle the upgrade.
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5.2 Votes and Proposals
The data type Vote represents the different voting options: yes, no, or abstain. For a Vote to be
cast, it must be packaged together with further information, such as who votes and for which
governance action. This information is combined in the GovVote record. An optional Anchor can
be provided to give context about why a vote was cast in a certain manner.

To propose a governance action, a GovProposal needs to be submitted. Beside the proposed
action, it requires:

• potentially a pointer to the previous action (see Sec. 5.1),
• potentially a pointer to the proposal policy (if one is required),
• a deposit, which will be returned to returnAddr, and
• an Anchor, providing further information about the proposal.

While the deposit is held, it is added to the deposit pot, similar to stake key deposits. It is
also counted towards the voting stake (but not the block production stake) of the reward address
to which it will be returned, so as not to reduce the submitter’s voting power when voting on
their own (and competing) actions. For a proposal to be valid, the deposit must be set to the
current value of govActionDeposit. The deposit will be returned when the action is removed
from the state in any way.

GovActionState is the state of an individual governance action. It contains the individual
votes, its lifetime, and information necessary to enact the action and to repay the deposit.
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data GovRole : Type where
CC DRep SPO : GovRole

Voter = GovRole × Credential
GovActionID = TxId × ℕ

data VDeleg : Type where
credVoter : GovRole → Credential → VDeleg
abstainRep : VDeleg
noConfidenceRep : VDeleg

record Anchor : Type where
field
url : String
hash : DocHash

data GovActionType : Type where
NoConfidence : GovActionType
UpdateCommittee : GovActionType
NewConstitution : GovActionType
TriggerHF : GovActionType
ChangePParams : GovActionType
TreasuryWdrl : GovActionType
Info : GovActionType

GovActionData : GovActionType → Type
GovActionData NoConfidence = ⊤
GovActionData UpdateCommittee = (Credential ⇀ Epoch) × ℙ Credential × ℚ
GovActionData NewConstitution = DocHash × Maybe ScriptHash
GovActionData TriggerHF = ProtVer
GovActionData ChangePParams = PParamsUpdate
GovActionData TreasuryWdrl = RwdAddr ⇀ Coin
GovActionData Info = ⊤

record GovAction : Type where
constructor ⟦_,_⟧ᵍᵃ
field
gaType : GovActionType
gaData : GovActionData gaType

open GovAction public

Figure 9: Governance actions
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Action Description
NoConfidence a motion to create a state of no-confidence in the current

constitutional committee
UpdateCommittee changes to the members of the constitutional committee and/or to

its signature threshold and/or terms
NewConstitution a modification to the off-chain Constitution and the proposal policy

script
TriggerHF3 triggers a non-backwards compatible upgrade of the network;

requires a prior software upgrade
ChangePParams a change to one or more updatable protocol parameters, excluding

changes to major protocol versions (“hard forks”)
TreasuryWdrl movements from the treasury
Info an action that has no effect on-chain, other than an on-chain record

Figure 10: Types of governance actions

NeedsHash : GovActionType → Type
NeedsHash NoConfidence = GovActionID
NeedsHash UpdateCommittee = GovActionID
NeedsHash NewConstitution = GovActionID
NeedsHash TriggerHF = GovActionID
NeedsHash ChangePParams = GovActionID
NeedsHash TreasuryWdrl = ⊤
NeedsHash Info = ⊤

HashProtected : Type → Type
HashProtected A = A × GovActionID

Figure 11: NeedsHash and HashProtected types
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data Vote : Type where
yes no abstain : Vote

record GovVote : Type where
field
gid : GovActionID
voter : Voter
vote : Vote
anchor : Maybe Anchor

record GovProposal : Type where
field
action : GovAction
prevAction : NeedsHash (gaType action)
policy : Maybe ScriptHash
deposit : Coin
returnAddr : RwdAddr
anchor : Anchor

record GovActionState : Type where
field
votes : Voter ⇀ Vote
returnAddr : RwdAddr
expiresIn : Epoch
action : GovAction
prevAction : NeedsHash (gaType action)

Figure 12: Vote and proposal types

getDRepVote : GovVote → Maybe Credential
getDRepVote record { voter = (DRep , credential) } = just credential
getDRepVote _ = nothing

proposedCC : GovAction → ℙ Credential
proposedCC ⟦ UpdateCommittee , (x , _ , _) ⟧ᵍᵃ = dom x
proposedCC _ = ∅

Figure 13: Governance helper function
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6 Transactions
This section is part of the Ledger.Transaction module of the formal ledger specification, where
we define transactions.

A transaction consists of a transaction body, a collection of witnesses and some optional
auxiliary data.

Ingredients of the transaction body introduced in the Conway era are the following:

• txvote, the list of votes for goverance actions;
• txprop, the list of governance proposals;
• txdonation, amount of Coin to donate to treasury, e.g., to return money to the treasury

after a governance action;
• curTreasury, the current value of the treasury. This field serves as a precondition to

executing Plutus scripts that access the value of the treasury;
• txsize and txid, the size and hash of the serialized form of the transaction that was

included in the block.

Abstract types

Ix TxId AuxiliaryData : Type

Transaction types

record TxBody : Type where
field
txins : ℙ TxIn
refInputs : ℙ TxIn
txouts : Ix ⇀ TxOut
txfee : Coin
mint : Value
txvldt : Maybe Slot × Maybe Slot
txcerts : List DCert
txwdrls : Wdrl
txvote : List GovVote
txprop : List GovProposal
txdonation : Coin
txup : Maybe Update
txADhash : Maybe ADHash
txNetworkId : Maybe Network
curTreasury : Maybe Coin
txsize : ℕ
txid : TxId
collateral : ℙ TxIn
reqSigHash : ℙ KeyHash
scriptIntHash : Maybe ScriptHash

Figure 14: Transactions and related types
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7 UTxO
This section is part of the Ledger.Utxo module of the formal ledger specification, where we define
types and functions needed for the UTxO transition system.

7.1 Accounting
Figs. 15 to 17 define types and functions needed for the UTxO transition system.

The deposits have been reworked since the original Shelley design. We now track the amount
of every deposit individually. This fixes an issue in the original design: An increase in deposit
amounts would allow an attacker to make lots of deposits before that change and refund them
after the change. The additional funds necessary would have been provided by the treasury.
Since changes to protocol parameters were (and still are) known publicly and guaranteed before
they are enacted, this comes at zero risk for an attacker. This means the deposit amounts could
realistically never be increased. This issue is gone with the new design.

Similar to ScriptPurpose, DepositPurpose carries the information what the deposit is being
made for. The deposits are stored in the deposits field of UTxOState (the type Deposits is
defined in Fig. 29). updateDeposits is responsible for updating this map, which is split into
updateCertDeposits and updateProposalDeposits, responsible for certificates and proposals re-
spectively. Both of these functions iterate over the relevant fields of the transaction body and
insert or remove deposits depending on the information seen. Note that some deposits can only
be refunded at the epoch boundary and are not removed by these functions.

There are two equivalent ways to introduce this tracking of the deposits. One option would
be to populate the deposits field of UTxOState with the correct keys and values that can be
extracted from the state of the previous era at the transition into the Conway era. Alternatively,
we can effectively treat the old handling of deposits as an erratum in the Shelley specification,
which we fix by implementing the new deposits logic in older eras and then replaying the chain.
(The handling of deposits in the Shelley era is discussed in Corduan et al. [1, Sec 8] and IOHK
Formal Methods Team [8, Sec B.2].)

UTxO states

record UTxOState : Type where
field
utxo : UTxO
fees : Coin
deposits : Deposits
donations : Coin

Figure 15: UTxO transition-system types

As seen in Fig. 17, we redefine depositRefunds and newDeposits via depositsChange, which
computes the difference between the total deposits before and after their application. This
simplifies their definitions and some correctness proofs. We then add the absolute value of
depositsChange to consumed or produced depending on its sign. This is done via negPart and
posPart, which satisfy the key property that their difference is the identity function.

Fig. 16 defines the function minfee. In Conway, minfee includes the cost for reference scripts.
This is calculated using scriptsCost (see Fig. 8).

Fig. 16 also shows the signature of ValidCertDeposits. Inhabitants of this type are con-
structed in one of eight ways, corresponding to seven certificate types plus one for an empty
list of certificates. Suffice it to say that ValidCertDeposits is used to check the validity of the
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refScriptsSize : UTxO → Tx → ℕ
refScriptsSize utxo tx = sum $ map scriptSize (refScripts tx utxo)

minfee : PParams → UTxO → Tx → Coin
minfee pp utxo tx = pp .a * tx .body .txsize + pp .b

+ txscriptfee (pp .prices) (totExUnits tx)
+ scriptsCost pp (refScriptsSize utxo tx)

certDeposit : DCert → PParams → Deposits
certDeposit (delegate c _ _ v) _ = ❴ CredentialDeposit c , v ❵
certDeposit (reg c _) pp = ❴ CredentialDeposit c , pp .keyDeposit ❵
certDeposit (regpool kh _) pp = ❴ PoolDeposit kh , pp .poolDeposit ❵
certDeposit (regdrep c v _) _ = ❴ DRepDeposit c , v ❵
certDeposit _ _ = ∅

certRefund : DCert → ℙ DepositPurpose
certRefund (dereg c _) = ❴ CredentialDeposit c ❵
certRefund (deregdrep c _) = ❴ DRepDeposit c ❵
certRefund _ = ∅

data ValidCertDeposits (pp : PParams) (deps : Deposits) : List DCert → Set
Figure 16: Functions used in UTxO rules

depositRefunds : PParams → UTxOState → TxBody → Coin
depositRefunds pp st txb = negPart (depositsChange pp txb (st .deposits))

newDeposits : PParams → UTxOState → TxBody → Coin
newDeposits pp st txb = posPart (depositsChange pp txb (st .deposits))

consumed : PParams → UTxOState → TxBody → Value
consumed pp st txb
= balance (st .utxo ∣ txb .txins)
+ txb .mint
+ inject (depositRefunds pp st txb)
+ inject (getCoin (txb .txwdrls))

produced : PParams → UTxOState → TxBody → Value
produced pp st txb = balance (outs txb)

+ inject (txb .txfee)
+ inject (newDeposits pp st txb)
+ inject (txb .txdonation)

Figure 17: Functions used in UTxO rules, continued
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deposits in a transaction so that the function updateCertDeposits can correctly register and
deregister deposits in the UTxO state based on the certificates in the transaction.

_⊢_⇀⦇_,UTXOS⦈_ : UTxOEnv → UTxOState → Tx → UTxOState → Type

Scripts-Yes :
let pp = Γ .pparams

sLst = collectPhaseTwoScriptInputs pp tx utxo
in
∙ ValidCertDeposits pp deposits txcerts
∙ evalScripts tx sLst ≡ isValid
∙ isValid ≡ true
────────────────────────────────
Γ ⊢ ⟦ utxo , fees , deposits , donations ⟧ ⇀⦇ tx ,UTXOS⦈ ⟦ (utxo ∣ txins ᶜ) ∪ˡ (outs txb) , fees + txfee , updateDeposits pp txb deposits , donations + txdonation ⟧

Scripts-No :
let pp = Γ .pparams

sLst = collectPhaseTwoScriptInputs pp tx utxo
in
∙ evalScripts tx sLst ≡ isValid
∙ isValid ≡ false
────────────────────────────────
Γ ⊢ ⟦ utxo , fees , deposits , donations ⟧ ⇀⦇ tx ,UTXOS⦈ ⟦ utxo ∣ collateral ᶜ , fees + cbalance (utxo ∣ collateral) , deposits , donations ⟧

Figure 18: UTXOS rule

Fig. 19 ties all the pieces of the UTXO rule together (The symbol ≡? is explained in Sec. 2).
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UTXO-inductive :
let pp = Γ .pparams

slot = Γ .slot
treasury = Γ .treasury
utxo = s .UTxOState.utxo
txoutsʰ = mapValues txOutHash txouts
overhead = 160

in
∙ txins ≢ ∅ ∙ txins ∪ refInputs ⊆ dom utxo
∙ txins ∩ refInputs ≡ ∅ ∙ inInterval slot txvldt
∙ feesOK pp tx utxo ∙ consumed pp s txb ≡ produced pp s txb
∙ coin mint ≡ 0 ∙ txsize ≤ maxTxSize pp
∙ refScriptsSize utxo tx ≤ pp .maxRefScriptSizePerTx
∙ ∀[ (_ , txout) ∈ txoutsʰ .proj₁ ]

inject ((overhead + utxoEntrySize txout) * coinsPerUTxOByte pp) ≤ᵗ getValueʰ txout
∙ ∀[ (_ , txout) ∈ txoutsʰ .proj₁ ]

serSize (getValueʰ txout) ≤ maxValSize pp
∙ ∀[ (a , _) ∈ range txoutsʰ ]

Sum.All (const ⊤) (λ a → a .BootstrapAddr.attrsSize ≤ 64) a
∙ ∀[ (a , _) ∈ range txoutsʰ ] netId a ≡ NetworkId
∙ ∀[ a ∈ dom txwdrls ] a .RwdAddr.net ≡ NetworkId
∙ txNetworkId ~ just NetworkId
∙ curTreasury ~ just treasury
∙ Γ ⊢ s ⇀⦇ tx ,UTXOS⦈ s'
────────────────────────────────
Γ ⊢ s ⇀⦇ tx ,UTXO⦈ s'

Figure 19: UTXO inference rules
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7.2 Witnessing
This section is part of the Ledger.Utxow module of the formal ledger specification, in which we
define witnessing.

The purpose of witnessing is make sure the intended action is authorized by the holder of
the signing key. (For details see Corduan et al. [1, Sec 8.3].) Fig. 20 defines functions used
for witnessing. witsVKeyNeeded and scriptsNeeded are now defined by projecting the same
information out of credsNeeded. Note that the last component of credsNeeded adds the script
in the proposal policy only if it is present.

allowedLanguages has additional conditions for new features in Conway. If a transaction
contains any votes, proposals, a treasury donation or asserts the treasury amount, it is only
allowed to contain Plutus V3 scripts. Additionally, the presence of reference scripts or inline
scripts does not prevent Plutus V1 scripts from being used in a transaction anymore. Only
inline datums are now disallowed from appearing together with a Plutus V1 script.

7.3 Plutus script context
CIP-0069 unifies the arguments given to all types of Plutus scripts currently available (spending,
certifying, rewarding, minting, voting, proposing).

The formal specification permits running spending scripts in the absence datums in the
Conway era. However, since the interface with Plutus is kept abstract in this specification,
changes to the representation of the script context which are part of CIP-0069 are not included
here. To provide a CIP-0069-conformant implementation of Plutus to this specification, an
additional step processing the List Data argument we provide would be required.

In Fig. 22, the line inputHashes ⊆ txdatsHashes compares two inhabitants of ℙ DataHash. In
the Alonzo spec, these two terms would have inhabited ℙ (Maybe DataHash), where a nothing is
thrown out [3, Sec 3.1].
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getVKeys : ℙ Credential → ℙ KeyHash
getVKeys = mapPartial isKeyHashObj

allowedLanguages : Tx → UTxO → ℙ Language
allowedLanguages tx utxo =
if (∃[ o ∈ os ] isBootstrapAddr (proj₁ o))
then ∅

else if UsesV3Features txb
then fromList (PlutusV3 ∷ [])

else if ∃[ o ∈ os ] HasInlineDatum o
then fromList (PlutusV2 ∷ PlutusV3 ∷ [])

else
fromList (PlutusV1 ∷ PlutusV2 ∷ PlutusV3 ∷ [])

where
txb = tx .Tx.body; open TxBody txb
os = range (outs txb) ∪ range (utxo ∣ (txins ∪ refInputs))

getScripts : ℙ Credential → ℙ ScriptHash
getScripts = mapPartial isScriptObj

credsNeeded : UTxO → TxBody → ℙ (ScriptPurpose × Credential)
credsNeeded utxo txb
= mapˢ (λ (i , o) → (Spend i , payCred (proj₁ o))) ((utxo ∣ (txins ∪ collateral)) ˢ)
∪ mapˢ (λ a → (Rwrd a , stake a)) (dom (txwdrls .proj₁))
∪ mapPartial (λ c → (Cert c ,_) <$> cwitness c) (fromList txcerts)
∪ mapˢ (λ x → (Mint x , ScriptObj x)) (policies mint)
∪ mapˢ (λ v → (Vote v , proj₂ v)) (fromList (map voter txvote))
∪ mapPartial (λ p → case p .policy of

(just sh) → just (Propose p , ScriptObj sh)
nothing → nothing) (fromList txprop)

witsVKeyNeeded : UTxO → TxBody → ℙ KeyHash
witsVKeyNeeded = getVKeys ∘ mapˢ proj₂ ∘ credsNeeded

scriptsNeeded : UTxO → TxBody → ℙ ScriptHash
scriptsNeeded = getScripts ∘ mapˢ proj₂ ∘ credsNeeded

Figure 20: Functions used for witnessing

_⊢_⇀⦇_,UTXOW⦈_ : UTxOEnv → UTxOState → Tx → UTxOState → Type

Figure 21: UTxOW transition-system types
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UTXOW-inductive :
let utxo = s .utxo

witsKeyHashes = mapˢ hash (dom vkSigs)
witsScriptHashes = mapˢ hash scripts
inputHashes = getInputHashes tx utxo
refScriptHashes = fromList $ map hash (refScripts tx utxo)
neededHashes = scriptsNeeded utxo txb
txdatsHashes = dom txdats
allOutHashes = getDataHashes (range txouts)
nativeScripts = mapPartial isInj₁ (txscripts tx utxo)

in
∙ ∀[ (vk , σ) ∈ vkSigs ] isSigned vk (txidBytes txid) σ
∙ ∀[ s ∈ nativeScripts ] (hash s ∈ neededHashes → validP1Script witsKeyHashes txvldt s)
∙ witsVKeyNeeded utxo txb ⊆ witsKeyHashes
∙ neededHashes ＼ refScriptHashes ≡ᵉ witsScriptHashes
∙ inputHashes ⊆ txdatsHashes
∙ txdatsHashes ⊆ inputHashes ∪ allOutHashes ∪ getDataHashes (range (utxo ∣ refInputs))
∙ languages tx utxo ⊆ allowedLanguages tx utxo
∙ txADhash ≡ map hash txAD
∙ Γ ⊢ s ⇀⦇ tx ,UTXO⦈ s'
────────────────────────────────
Γ ⊢ s ⇀⦇ tx ,UTXOW⦈ s'

Figure 22: UTXOW inference rules
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Derived types

GovState = List (GovActionID × GovActionState)

record GovEnv : Type where
field
txid : TxId
epoch : Epoch
pparams : PParams
ppolicy : Maybe ScriptHash
enactState : EnactState
certState : CertState
rewardCreds : ℙ Credential

Figure 23: Types used in the GOV transition system

8 Governance
This section is part of the Ledger.Gov module of the formal ledger specification, where we define
the types required for ledger governance.

The behavior of GovState is similar to that of a queue. New proposals are appended at the
end, but any proposal can be removed at the epoch boundary. However, for the purposes of
enactment, earlier proposals take priority. Note that EnactState used in GovEnv is defined in
Sec. 11.

• addVote inserts (and potentially overrides) a vote made for a particular governance action
(identified by its ID) by a credential with a role.

• addAction adds a new proposed action at the end of a given GovState.
• The validHFAction property indicates whether a given proposal, if it is a TriggerHF action,

can potentially be enacted in the future. For this to be the case, its prevAction needs to
exist, be another TriggerHF action and have a compatible version.

Fig. 26 shows some of the functions used to determine whether certain actions are enactable
in a given state. Specifically, allEnactable passes the GovState to getAidPairsList to obtain a
list of GovActionID-pairs which is then passed to enactable. The latter uses the _connects_to_
function to check whether the list of GovActionID-pairs connects the proposed action to a previ-
ously enacted one.

The function govActionPriority assigns a priority to the various types of governance actions.
This is useful for ordering lists of governance actions (see insertGovAction in Fig. 24). Priority
is also used to check if two actions Overlap: that is, they potentially modify the same piece of
EnactState.
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govActionPriority : GovActionType → ℕ
govActionPriority NoConfidence = 0
govActionPriority UpdateCommittee = 1
govActionPriority NewConstitution = 2
govActionPriority TriggerHF = 3
govActionPriority ChangePParams = 4
govActionPriority TreasuryWdrl = 5
govActionPriority Info = 6

Overlap : GovActionType → GovActionType → Type
Overlap NoConfidence UpdateCommittee = ⊤
Overlap UpdateCommittee NoConfidence = ⊤
Overlap a a' = a ≡ a'

insertGovAction : GovState → GovActionID × GovActionState → GovState
insertGovAction [] gaPr = [ gaPr ]
insertGovAction ((gaID₀ , gaSt₀) ∷ gaPrs) (gaID₁ , gaSt₁)
= if (govActionPriority (action gaSt₀ .gaType)) ≤? (govActionPriority (action gaSt₁ .gaType))
then (gaID₀ , gaSt₀) ∷ insertGovAction gaPrs (gaID₁ , gaSt₁)
else (gaID₁ , gaSt₁) ∷ (gaID₀ , gaSt₀) ∷ gaPrs

mkGovStatePair : Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash (a .gaType)
→ GovActionID × GovActionState

mkGovStatePair e aid addr a prev = (aid , record
{ votes = ∅ ; returnAddr = addr ; expiresIn = e ; action = a ; prevAction = prev })

addAction : GovState
→ Epoch → GovActionID → RwdAddr → (a : GovAction) → NeedsHash (a .gaType)
→ GovState

addAction s e aid addr a prev = insertGovAction s (mkGovStatePair e aid addr a prev)
addVote : GovState → GovActionID → Voter → Vote → GovState
addVote s aid voter v = map modifyVotes s
where modifyVotes : GovActionID × GovActionState → GovActionID × GovActionState

modifyVotes = λ (gid , s') → gid , record s'
{ votes = if gid ≡ aid then insert (votes s') voter v else votes s'}

isRegistered : GovEnv → Voter → Type
isRegistered Γ (r , c) = case r of λ where
CC → just c ∈ range (gState .ccHotKeys)
DRep → c ∈ dom (gState .dreps)
SPO → c ∈ mapˢ KeyHashObj (dom (pState .pools))
where
open CertState (GovEnv.certState Γ) using (gState; pState)

validHFAction : GovProposal → GovState → EnactState → Type
validHFAction (record { action = ⟦ TriggerHF , v ⟧ᵍᵃ ; prevAction = prev }) s e =
(let (v' , aid) = EnactState.pv e in aid ≡ prev × pvCanFollow v' v)
⊎ ∃₂[ x , v' ] (prev , x) ∈ fromList s × x .action ≡ ⟦ TriggerHF , v' ⟧ᵍᵃ × pvCanFollow v' v

validHFAction _ _ _ = ⊤

Figure 24: Functions used in the GOV transition system
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Transition relation types

_⊢_⇀⦇_,GOV⦈_ : GovEnv × ℕ → GovState → GovVote ⊎ GovProposal → GovState → Type
_⊢_⇀⦇_,GOVS⦈_ : GovEnv → GovState → List (GovVote ⊎ GovProposal) → GovState → Type

Figure 25: Type signature of the transition relation of the GOV transition system

enactable : EnactState → List (GovActionID × GovActionID)
→ GovActionID × GovActionState → Type

enactable e aidPairs = λ (aidNew , as) → case getHashES e (action as .gaType) of
nothing → ⊤
(just aidOld) → ∃[ t ] fromList t ⊆ fromList aidPairs

× Unique t × t connects aidNew to aidOld

allEnactable : EnactState → GovState → Type
allEnactable e aid×states = All (enactable e (getAidPairsList aid×states)) aid×states

hasParentE : EnactState → GovActionID → GovActionType → Type
hasParentE e aid gaTy = case getHashES e gaTy of
nothing → ⊤
(just id) → id ≡ aid

hasParent : EnactState → GovState → (gaTy : GovActionType) → NeedsHash gaTy → Type
hasParent e s gaTy aid = case getHash aid of
nothing → ⊤
(just aid') → hasParentE e aid' gaTy

⊎ Any (λ (gid , gas) → gid ≡ aid' × Overlap (gas .action .gaType) gaTy) s

Figure 26: Enactability predicate
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actionValid : ℙ Credential → Maybe ScriptHash → Maybe ScriptHash → Epoch → GovAction → Type
actionValid rewardCreds p ppolicy epoch ⟦ ChangePParams , _ ⟧ᵍᵃ =
p ≡ ppolicy

actionValid rewardCreds p ppolicy epoch ⟦ TreasuryWdrl , x ⟧ᵍᵃ =
p ≡ ppolicy × mapˢ RwdAddr.stake (dom x) ⊆ rewardCreds

actionValid rewardCreds p ppolicy epoch ⟦ UpdateCommittee , (new , rem , q) ⟧ᵍᵃ =
p ≡ nothing × (∀[ e ∈ range new ] epoch < e) × (dom new ∩ rem ≡ᵉ ∅)

actionValid rewardCreds p ppolicy epoch _ =
p ≡ nothing

actionWellFormed : GovAction → Type
actionWellFormed ⟦ ChangePParams , x ⟧ᵍᵃ = ppdWellFormed x
actionWellFormed ⟦ TreasuryWdrl , x ⟧ᵍᵃ =
(∀[ a ∈ dom x ] RwdAddr.net a ≡ NetworkId) × (∃[ v ∈ range x ] ¬ (v ≡ 0))

actionWellFormed _ = ⊤

Figure 27: Validity and wellformedness predicates

Fig. 27 defines predicates used in the GOV-Propose case of the GOV rule to ensure that a
governance action is valid and well-formed.

• actionValid ensures that the proposed action is valid given the current state of the system:

– a ChangePParams action is valid if the proposal policy is provided;
– a TreasuryWdrl action is valid if the proposal policy is provided and the reward stake

credential is registered;
– an UpdateCommittee action is valid if credentials of proposed candidates have not

expired, and the action does not propose to both add and remove the same candidate.

• actionWellFormed ensures that the proposed action is well-formed:

– a ChangePParams action must preserves well-formedness of the protocol parameters;
– a TreasuryWdrl action is well-formed if the network ID is correct and there is at least

one non-zero withdrawal amount in the given RwdAddr ⇀ Coin map.
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data _⊢_⇀⦇_,GOV⦈_ where
GOV-Vote :
∙ (aid , ast) ∈ fromList s
∙ canVote (Γ .pparams) (action ast) (proj₁ voter)
∙ isRegistered Γ voter
∙ ¬ expired (Γ .epoch) ast
───────────────────────────────────────
(Γ , k) ⊢ s ⇀⦇ inj₁ ⟦ aid , voter , v , machr ⟧ ,GOV⦈ addVote s aid voter v

GOV-Propose :
let pp = Γ .pparams

e = Γ .epoch
enactState = Γ .enactState
rewardCreds = Γ .rewardCreds
prop = record { returnAddr = addr ; action = a ; anchor = achr

; policy = p ; deposit = d ; prevAction = prev }
in
∙ actionWellFormed a
∙ actionValid rewardCreds p (Γ .ppolicy) e a
∙ d ≡ pp .govActionDeposit
∙ validHFAction prop s enactState
∙ hasParent enactState s (a .gaType) prev
∙ addr .RwdAddr.net ≡ NetworkId
∙ addr .RwdAddr.stake ∈ rewardCreds
───────────────────────────────────────
(Γ , k) ⊢ s ⇀⦇ inj₂ prop ,GOV⦈ addAction s (pp .govActionLifetime +ᵉ e)

(Γ .txid , k) addr a prev

_⊢_⇀⦇_,GOVS⦈_ = ReflexiveTransitiveClosureᵢ {sts = _⊢_⇀⦇_,GOV⦈_}

Figure 28: Rules for the GOV transition system

The GOVS transition system is now given as the reflexitive-transitive closure of the system
GOV, described in Fig. 28.

For GOV-Vote, we check that the governance action being voted on exists; that the voter’s role
is allowed to vote (see canVote in Fig. 41); and that the voter’s credential is actually associated
with their role (see isRegistered in Fig. 25).

For GOV-Propose, we check the correctness of the deposit along with some and some conditions
that ensure the action is well-formed and valid; naturally, these checks depend on the type of
action being proposed (see Fig. 27).
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9 Certificates
This section is part of the Ledger.Certs module of the formal ledger specification.

Derived types

data DepositPurpose : Type where
CredentialDeposit : Credential → DepositPurpose
PoolDeposit : KeyHash → DepositPurpose
DRepDeposit : Credential → DepositPurpose
GovActionDeposit : GovActionID → DepositPurpose

Deposits = DepositPurpose ⇀ Coin

Figure 29: Deposit types

data DCert : Type where
delegate : Credential → Maybe VDeleg → Maybe KeyHash → Coin → DCert
dereg : Credential → Maybe Coin → DCert
regpool : KeyHash → PoolParams → DCert
retirepool : KeyHash → Epoch → DCert
regdrep : Credential → Coin → Anchor → DCert
deregdrep : Credential → Coin → DCert
ccreghot : Credential → Maybe Credential → DCert

Figure 30: Delegation definitions

9.1 Changes Introduced in Conway Era
9.1.1 Delegation

Registered credentials can now delegate to a DRep as well as to a stake pool. This is achieved
by giving the delegate certificate two optional fields, corresponding to a DRep and stake pool.

Stake can be delegated for voting and block production simultaneously, since these are two
separate features. In fact, preventing this could weaken the security of the chain, since security
relies on high participation of honest stake holders.

9.1.2 Removal of Pointer Addresses, Genesis Delegations and MIR Certificates

Support for pointer addresses, genesis delegations and MIR certificates is removed (see CIP-1694
and Corduan et al. [5]). In DState, this means that the four fields relating to those features are
no longer present, and DelegEnv contains none of the fields it used to in the Shelley era (see
Corduan et al. [1, Sec 9.2]).

Note that pointer addresses are still usable, only their staking functionality has been retired.
So all funds locked behind pointer addresses are still accessible, they just don’t count towards
the stake distribution anymore. Genesis delegations and MIR certificates have been superceded
by the new governance mechanisms, in particular the TreasuryWdrl governance action in case of
the MIR certificates.
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record CertEnv : Type where
field
epoch : Epoch
pp : PParams
votes : List GovVote
wdrls : RwdAddr ⇀ Coin
coldCreds : ℙ Credential

record DState : Type where
field
voteDelegs : Credential ⇀ VDeleg
stakeDelegs : Credential ⇀ KeyHash
rewards : Credential ⇀ Coin

record GState : Type where
field
dreps : Credential ⇀ Epoch
ccHotKeys : Credential ⇀ Maybe Credential

record CertState : Type where
field
dState : DState
pState : PState
gState : GState

record DelegEnv : Type where
field
pparams : PParams
pools : KeyHash ⇀ PoolParams
delegatees : ℙ Credential

GovCertEnv = CertEnv
PoolEnv = PParams

Figure 31: Types used for CERTS transition system

9.1.3 Explicit Deposits

Registration and deregistration of staking credentials are now required to explicitly state the
deposit that is being paid or refunded. This deposit is used for checking correctness of trans-
actions with certificates. Including the deposit aligns better with other design decisions such
as having explicit transaction fees and helps make this information visible to light clients and
hardware wallets.

While not shown in the figures, the old certificates without explicit deposits will still be
supported for some time for backwards compatibility.

9.2 Governance Certificate Rules
The rules for transition systems dealing with individual certificates are defined in Figs. 33
and 34.GOVCERT deals with the new certificates relating to DReps and the constitutional
committee.
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• GOVCERT-regdrep registers (or re-registers) a DRep. In case of registration, a deposit needs
to be paid. Either way, the activity period of the DRep is reset.

• GOVCERT-deregdrep deregisters a DRep.
• GOVCERT-ccreghot registers a “hot” credential for constitutional committee members.4 We

check that the cold key did not previously resign from the committee. We allow this
delegation for any cold credential that is either part of EnactState or is is a proposal. This
allows a newly elected member of the constitutional committee to immediately delegate
their vote to a hot key and use it to vote. Since votes are counted after previous actions
have been enacted, this allows constitutional committee members to act without a delay
of one epoch.

_⊢_⇀⦇_,DELEG⦈_ : DelegEnv → DState → DCert → DState → Type
_⊢_⇀⦇_,POOL⦈_ : PoolEnv → PState → DCert → PState → Type
_⊢_⇀⦇_,GOVCERT⦈_ : GovCertEnv → GState → DCert → GState → Type
_⊢_⇀⦇_,CERT⦈_ : CertEnv → CertState → DCert → CertState → Type
_⊢_⇀⦇_,CERTBASE⦈_ : CertEnv → CertState → ⊤ → CertState → Type
_⊢_⇀⦇_,CERTS⦈_ : CertEnv → CertState → List DCert → CertState → Type

Figure 32: Types for the transition systems relating to certificates

Fig. 35 assembles the CERTS transition system by bundling the previously defined pieces to-
gether into the CERT system, and then taking the reflexive-transitive closure of CERT together
with CERTBASE as the base case. CERTBASE does the following:

• check the correctness of withdrawals and ensure that withdrawals only happen from cre-
dentials that have delegated their voting power;

• set the rewards of the credentials that withdrew funds to zero;
• and set the activity timer of all DReps that voted to drepActivity epochs in the future.

4By “hot” and “cold” credentials we mean the following: a cold credential is used to register a hot credential,
and then the hot credential is used for voting. The idea is that the access to the cold credential is kept in a secure
location, while the hot credential is more conveniently accessed. If the hot credential is compromised, it can be
changed using the cold credential.
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DELEG-delegate :
let Γ = ⟦ pp , pools , delegatees ⟧
in
∙ (c ∉ dom rwds → d ≡ pp .keyDeposit)
∙ (c ∈ dom rwds → d ≡ 0)
∙ mv ∈ mapˢ (just ∘ credVoter DRep) delegatees ∪

fromList ( nothing ∷ just abstainRep ∷ just noConfidenceRep ∷ [] )
∙ mkh ∈ mapˢ just (dom pools) ∪ ❴ nothing ❵
────────────────────────────────
Γ ⊢ ⟦ vDelegs , sDelegs , rwds ⟧ ⇀⦇ delegate c mv mkh d ,DELEG⦈

⟦ insertIfJust c mv vDelegs , insertIfJust c mkh sDelegs , rwds ∪ˡ ❴ c , 0 ❵ ⟧

DELEG-dereg :
∙ (c , 0) ∈ rwds
────────────────────────────────
⟦ pp , pools , delegatees ⟧ ⊢ ⟦ vDelegs , sDelegs , rwds ⟧ ⇀⦇ dereg c md ,DELEG⦈
⟦ vDelegs ∣ ❴ c ❵ ᶜ , sDelegs ∣ ❴ c ❵ ᶜ , rwds ∣ ❴ c ❵ ᶜ ⟧

DELEG-reg :
∙ c ∉ dom rwds
∙ d ≡ pp .keyDeposit ⊎ d ≡ 0
────────────────────────────────
⟦ pp , pools , delegatees ⟧ ⊢
⟦ vDelegs , sDelegs , rwds ⟧ ⇀⦇ reg c d ,DELEG⦈
⟦ vDelegs , sDelegs , rwds ∪ˡ ❴ c , 0 ❵ ⟧

Figure 33: Auxiliary DELEG transition system

GOVCERT-regdrep :
let Γ = ⟦ e , pp , vs , wdrls , cc ⟧
in
∙ (d ≡ pp .drepDeposit × c ∉ dom dReps) ⊎ (d ≡ 0 × c ∈ dom dReps)
────────────────────────────────
Γ ⊢ ⟦ dReps , ccKeys ⟧ ⇀⦇ regdrep c d an ,GOVCERT⦈

⟦ ❴ c , e + pp .drepActivity ❵ ∪ˡ dReps , ccKeys ⟧

GOVCERT-deregdrep :
∙ c ∈ dom dReps
────────────────────────────────
⟦ e , pp , vs , wdrls , cc ⟧ ⊢ ⟦ dReps , ccKeys ⟧ ⇀⦇ deregdrep c d ,GOVCERT⦈ ⟦ dReps ∣ ❴ c ❵ ᶜ , ccKeys ⟧

GOVCERT-ccreghot :
∙ (c , nothing) ∉ ccKeys
∙ c ∈ cc
────────────────────────────────
⟦ e , pp , vs , wdrls , cc ⟧ ⊢ ⟦ dReps , ccKeys ⟧ ⇀⦇ ccreghot c mc ,GOVCERT⦈ ⟦ dReps , ❴ c , mc ❵ ∪ˡ ccKeys ⟧

Figure 34: Auxiliary GOVCERT transition system
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CERT transitions

CERT-deleg :
∙ ⟦ pp , PState.pools stᵖ , dom (GState.dreps stᵍ) ⟧ ⊢ stᵈ ⇀⦇ dCert ,DELEG⦈ stᵈ'
────────────────────────────────
⟦ e , pp , vs , wdrls , cc ⟧ ⊢ ⟦ stᵈ , stᵖ , stᵍ ⟧ ⇀⦇ dCert ,CERT⦈ ⟦ stᵈ' , stᵖ , stᵍ ⟧

CERT-pool :
∙ pp ⊢ stᵖ ⇀⦇ dCert ,POOL⦈ stᵖ'
────────────────────────────────
⟦ e , pp , vs , wdrls , cc ⟧ ⊢ ⟦ stᵈ , stᵖ , stᵍ ⟧ ⇀⦇ dCert ,CERT⦈ ⟦ stᵈ , stᵖ' , stᵍ ⟧

CERT-vdel :
∙ Γ ⊢ stᵍ ⇀⦇ dCert ,GOVCERT⦈ stᵍ'
────────────────────────────────
Γ ⊢ ⟦ stᵈ , stᵖ , stᵍ ⟧ ⇀⦇ dCert ,CERT⦈ ⟦ stᵈ , stᵖ , stᵍ' ⟧

CERTBASE transition

CERT-base :
let refresh = mapPartial getDRepVote (fromList vs)

refreshedDReps = mapValueRestricted (const (e + pp .drepActivity)) dReps refresh
wdrlCreds = mapˢ stake (dom wdrls)
validVoteDelegs = voteDelegs ∣^ ( mapˢ (credVoter DRep) (dom dReps)

∪ fromList (noConfidenceRep ∷ abstainRep ∷ []) )
in
∙ filter isKeyHash wdrlCreds ⊆ dom voteDelegs
∙ mapˢ (map₁ stake) (wdrls ˢ) ⊆ rewards ˢ
────────────────────────────────
⟦ e , pp , vs , wdrls , cc ⟧ ⊢

⟦ ⟦ voteDelegs , stakeDelegs , rewards ⟧
, stᵖ
, ⟦ dReps , ccHotKeys ⟧
⟧ ⇀⦇ _ ,CERTBASE⦈
⟦ ⟦ validVoteDelegs , stakeDelegs , constMap wdrlCreds 0 ∪ˡ rewards ⟧
, stᵖ
, ⟦ refreshedDReps , ccHotKeys ⟧
⟧

Figure 35: CERTS rules
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10 Ledger
This section is part of the Ledger.Ledger module of the formal ledger specification, where the
entire state transformation of the ledger state caused by a valid transaction can now be given
as a combination of the previously defined transition systems.

As there is nothing new to the Conway era in this part of the ledger, we do not present any
details of the Agda formalization.

record LEnv : Type where
field
slot : Slot
ppolicy : Maybe ScriptHash
pparams : PParams
enactState : EnactState
treasury : Coin

record LState : Type where
field
utxoSt : UTxOState
govSt : GovState
certState : CertState

txgov : TxBody → List (GovVote ⊎ GovProposal)
txgov txb = map inj₂ txprop ++ map inj₁ txvote
where open TxBody txb

rmOrphanDRepVotes : CertState → GovState → GovState
rmOrphanDRepVotes cs govSt = L.map (map₂ go) govSt
where
ifDRepRegistered : Voter → Type
ifDRepRegistered (r , c) = r ≡ DRep → c ∈ dom (cs .gState .dreps)

go : GovActionState → GovActionState
go gas = record gas { votes = filterKeys ifDRepRegistered (gas .votes) }

allColdCreds : GovState → EnactState → ℙ Credential
allColdCreds govSt es =
ccCreds (es .cc) ∪ concatMapˢ (λ (_ , st) → proposedCC (st .action)) (fromList govSt)

Figure 36: Types and functions for the LEDGER transition system
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data _⊢_⇀⦇_,LEDGER⦈_ : LEnv → LState → Tx → LState → Type where

LEDGER-V :
let txb = tx .body

rewards = certState .dState .rewards
in
∙ isValid tx ≡ true
∙ ⟦ slot , pp , treasury ⟧ ⊢ utxoSt ⇀⦇ tx ,UTXOW⦈ utxoSt'
∙ ⟦ epoch slot , pp , txvote , txwdrls , allColdCreds govSt enactState ⟧ ⊢ certState ⇀⦇ txcerts ,CERTS⦈ certState'
∙ ⟦ txid , epoch slot , pp , ppolicy , enactState , certState' , dom rewards ⟧ ⊢ rmOrphanDRepVotes certState' govSt ⇀⦇ txgov txb ,GOVS⦈ govSt'
────────────────────────────────
⟦ slot , ppolicy , pp , enactState , treasury ⟧ ⊢ ⟦ utxoSt , govSt , certState ⟧ ⇀⦇ tx ,LEDGER⦈ ⟦ utxoSt' , govSt' , certState' ⟧

LEDGER-I :
∙ isValid tx ≡ false
∙ ⟦ slot , pp , treasury ⟧ ⊢ utxoSt ⇀⦇ tx ,UTXOW⦈ utxoSt'
────────────────────────────────
⟦ slot , ppolicy , pp , enactState , treasury ⟧ ⊢ ⟦ utxoSt , govSt , certState ⟧ ⇀⦇ tx ,LEDGER⦈ ⟦ utxoSt' , govSt , certState ⟧

Figure 37: LEDGER transition system
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11 Enactment
This section is part of the Ledger.Enact module of the formal ledger specification

Fig. 38 contains some definitions required to define the ENACT transition system. EnactEnv
is the environment and EnactState the state of ENACT, which enacts a governance action.
All governance actions except TreasuryWdrl and Info modify EnactState permanently, which
of course can have further consequences. TreasuryWdrl accumulates withdrawal temporarily
in EnactState, but this information is applied and discarded immediately in EPOCH. Also,
enacting these governance actions is the only way of modifying EnactState. The withdrawals
field of EnactState is special in that it is ephemeral—ENACT accumulates withdrawals there
which are paid out at the next epoch boundary where this field will be reset.

Note that all other fields of EnactState also contain a GovActionID since they are HashPro-
tected.

Figs. 39 and 40 define the rules of the ENACT transition system. Usually no preconditions
are checked and the state is simply updated (including the GovActionID for the hash protection
scheme, if required). The exceptions are UpdateCommittee and TreasuryWdrl:

• UpdateCommittee requires that maximum terms are respected, and
• TreasuryWdrl requires that the treasury is able to cover the sum of all withdrawals (old

and new).
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record EnactEnv : Type where
field
gid : GovActionID
treasury : Coin
epoch : Epoch

record EnactState : Type where
field
cc : HashProtected (Maybe ((Credential ⇀ Epoch) × ℚ))
constitution : HashProtected (DocHash × Maybe ScriptHash)
pv : HashProtected ProtVer
pparams : HashProtected PParams
withdrawals : RwdAddr ⇀ Coin

ccCreds : HashProtected (Maybe ((Credential ⇀ Epoch) × ℚ)) → ℙ Credential
ccCreds (just x , _) = dom (x .proj₁)
ccCreds (nothing , _) = ∅

getHash : ∀ {a} → NeedsHash a → Maybe GovActionID
getHash {NoConfidence} h = just h
getHash {UpdateCommittee} h = just h
getHash {NewConstitution} h = just h
getHash {TriggerHF} h = just h
getHash {ChangePParams} h = just h
getHash {TreasuryWdrl} _ = nothing
getHash {Info} _ = nothing

getHashES : EnactState → GovActionType → Maybe GovActionID
getHashES es NoConfidence = just (es .cc .proj₂)
getHashES es (UpdateCommittee) = just (es .cc .proj₂)
getHashES es (NewConstitution) = just (es .constitution .proj₂)
getHashES es (TriggerHF) = just (es .pv .proj₂)
getHashES es (ChangePParams) = just (es .pparams .proj₂)
getHashES es (TreasuryWdrl) = nothing
getHashES es Info = nothing

Type of the ENACT transition system
_⊢_⇀⦇_,ENACT⦈_ : EnactEnv → EnactState → GovAction → EnactState → Type

Figure 38: Types and function used for the ENACT transition system
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Enact-NoConf :
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ NoConfidence , _ ⟧ᵍᵃ ,ENACT⦈ record s { cc = nothing , gid }

Enact-UpdComm : let old = maybe proj₁ ∅ (s .cc .proj₁)
maxTerm = s .pparams .proj₁ .ccMaxTermLength +ᵉ e

in
∀[ term ∈ range new ] term ≤ maxTerm
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ UpdateCommittee , (new , rem , q) ⟧ᵍᵃ ,ENACT⦈
record s { cc = just ((new ∪ˡ old) ∣ rem ᶜ , q) , gid }

Enact-NewConst :
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ NewConstitution , (dh , sh) ⟧ᵍᵃ ,ENACT⦈ record s { constitution = (dh , sh) , gid }

Figure 39: ENACT transition system

Enact-HF :
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ TriggerHF , v ⟧ᵍᵃ ,ENACT⦈ record s { pv = v , gid }

Enact-PParams :
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ ChangePParams , up ⟧ᵍᵃ ,ENACT⦈
record s { pparams = applyUpdate (s .pparams .proj₁) up , gid }

Enact-Wdrl : let newWdrls = s .withdrawals ∪⁺ wdrl in
∑[ x ← newWdrls ] x ≤ t
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ TreasuryWdrl , wdrl ⟧ᵍᵃ ,ENACT⦈ record s { withdrawals = newWdrls }

Enact-Info :
───────────────────────────────────────
⟦ gid , t , e ⟧ ⊢ s ⇀⦇ ⟦ Info , _ ⟧ᵍᵃ ,ENACT⦈ s

Figure 40: ENACT transition system (continued)
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12 Ratification
This section is part of the Ledger.Ratify module of the formal ledger specification

Governance actions are ratified through on-chain votes. Different kinds of governance actions
have different ratification requirements but always involve at least two of the three governance
bodies.

A successful motion of no-confidence, election of a new constitutional committee, a consti-
tutional change, or a hard-fork delays ratification of all other governance actions until the first
epoch after their enactment. This gives a new constitutional committee enough time to vote on
current proposals, re-evaluate existing proposals with respect to a new constitution, and ensures
that the (in principle arbitrary) semantic changes caused by enacting a hard-fork do not have
unintended consequences in combination with other actions.

12.1 Ratification Requirements
Fig. 41 details the ratification requirements for each governance action scenario. For a governance
action to be ratified, all of these requirements must be satisfied, on top of other conditions that
are explained further down. The threshold function is defined as a table, with a row for each
type of GovAction and the colums representing the CC, DRep and SPO roles in that order.

The symbols mean the following:

• vote x: For an action to pass, the fraction of stake associated with yes votes with respect
to that associated with yes and no votes must exceed the threshold x.

• ─: The body of governance does not participate in voting.
• ✓: The constitutional committee needs to approve an action, with the threshold assigned

to it.
• ✓†: Voting is possible, but the action will never be enacted. This is equivalent to vote 2

(or any other number above 1).

Two rows in this table contain functions that compute the DRep and SPO thresholds simulta-
neously: the rows for UpdateCommittee and ChangePParams.

For UpdateCommittee, there can be different thresholds depending on whether the system is
in a state of no-confidence or not. This information is provided via the ccThreshold argument:
if the system is in a state of no-confidence, then ccThreshold is set to nothing.

In case of the ChangePParams action, the thresholds further depend on what groups that
action is associated with. pparamThreshold associates a pair of thresholds to each individual
group. Since an individual update can contain multiple groups, the actual thresholds are then
given by taking the maximum of all those thresholds.

Note that each protocol parameter belongs to exactly one of the four groups that have a
DRep threshold, so a DRep vote will always be required. A protocol parameter may or may not
be in the SecurityGroup, so an SPO vote may not be required.

Finally, each of the P𝑥 and Q𝑥 in Fig. 41 are protocol parameters.

12.2 Protocol Parameters and Governance Actions
Voting thresholds for protocol parameters can be set by group, and we do not require that each
protocol parameter governance action be confined to a single group. In case a governance action
carries updates for multiple parameters from different groups, the maximum threshold of all the
groups involved will apply to any given such governance action.

The purpose of the SecurityGroup is to add an additional check to security-relevant protocol
parameters. Any proposal that includes a change to a security-relevant protocol parameter must
also be accepted by at least half of the SPO stake.

41

https://github.com/IntersectMBO/formal-ledger-specifications/blob/master/src/Ledger/Ratify.lagda
https://github.com/IntersectMBO/formal-ledger-specifications


threshold : PParams → Maybe ℚ → GovAction → GovRole → Maybe ℚ
threshold pp ccThreshold =
⟦ NoConfidence , _ ⟧ᵍᵃ → ∣ ─ ∣ vote P1 ∣ vote Q1 ∣
⟦ UpdateCommittee , _ ⟧ᵍᵃ → ∣ ─ ∥ P/Q2a/b ∣
⟦ NewConstitution , _ ⟧ᵍᵃ → ∣ ✓ ∣ vote P3 ∣ ─ ∣
⟦ TriggerHF , _ ⟧ᵍᵃ → ∣ ✓ ∣ vote P4 ∣ vote Q4 ∣
⟦ ChangePParams , x ⟧ᵍᵃ → ∣ ✓ ∥ P/Q5 x ∣
⟦ TreasuryWdrl , _ ⟧ᵍᵃ → ∣ ✓ ∣ vote P6 ∣ ─ ∣
⟦ Info , _ ⟧ᵍᵃ → ∣ ✓† ∣ ✓† ∣ ✓† ∣
where
P/Q2a/b : Maybe ℚ × Maybe ℚ
P/Q2a/b = case ccThreshold of

(just _) → (vote P2a , vote Q2a)
nothing → (vote P2b , vote Q2b)

pparamThreshold : PParamGroup → Maybe ℚ × Maybe ℚ
pparamThreshold NetworkGroup = (vote P5a , ─ )
pparamThreshold EconomicGroup = (vote P5b , ─ )
pparamThreshold TechnicalGroup = (vote P5c , ─ )
pparamThreshold GovernanceGroup = (vote P5d , ─ )
pparamThreshold SecurityGroup = (─ , vote Q5 )

P/Q5 : PParamsUpdate → Maybe ℚ × Maybe ℚ
P/Q5 ppu = maxThreshold (mapˢ (proj₁ ∘ pparamThreshold) (updateGroups ppu))

, maxThreshold (mapˢ (proj₂ ∘ pparamThreshold) (updateGroups ppu))

canVote : PParams → GovAction → GovRole → Type
canVote pp a r = Is-just (threshold pp nothing a r)

Figure 41: Functions related to voting

12.3 Ratification Restrictions
As mentioned earlier, most governance actions must include a GovActionID for the most recently
enacted action of its given type. Consequently, two actions of the same type can be enacted at
the same time, but they must be deliberately designed to do so.

Fig. 42 defines some types and functions used in the RATIFY transition system. CCData is
simply an alias to define some functions more easily.

Fig. 43 defines the actualVotes function. Given the current state about votes and other
parts of the system it calculates a new mapping of votes, which is the mapping that will actually
be used during ratification. Things such as default votes or resignation/expiry are implemented
in this way.

actualVotes is defined as the union of four voting maps, corresponding to the constitutional
committee, predefined (or auto) DReps, regular DReps and SPOs.

• roleVotes filters the votes based on the given governance role and is a helper for definitions
further down.

• if a CC member has not yet registered a hot key, has expired, or has resigned, then actu-
alCCVote returns abstain; if none of these conditions is met, then

– if the CC member has voted, then that vote is returned;
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record StakeDistrs : Type where
field
stakeDistr : VDeleg ⇀ Coin

record RatifyEnv : Type where
field
stakeDistrs : StakeDistrs
currentEpoch : Epoch
dreps : Credential ⇀ Epoch
ccHotKeys : Credential ⇀ Maybe Credential
treasury : Coin
pools : KeyHash ⇀ PoolParams
delegatees : Credential ⇀ VDeleg

record RatifyState : Type where
field
es : EnactState
removed : ℙ (GovActionID × GovActionState)
delay : Bool

CCData : Type
CCData = Maybe ((Credential ⇀ Epoch) × ℚ)

govRole : VDeleg → GovRole
govRole (credVoter gv _) = gv
govRole abstainRep = DRep
govRole noConfidenceRep = DRep

IsCC IsDRep IsSPO : VDeleg → Type
IsCC v = govRole v ≡ CC
IsDRep v = govRole v ≡ DRep
IsSPO v = govRole v ≡ SPO

Figure 42: Types and functions for the RATIFY transition system

– if the CC member has not voted, then the default value of no is returned.

• actualDRepVotes adds a default vote of no to all active DReps that didn’t vote.
• actualSPOVotes adds a default vote to all SPOs who didn’t vote, with the default depending

on the action.

Let us discuss the last item above—the way SPO votes are counted—as the ledger specification’s
handling of this has evolved in response to community feedback. Previously, if an SPO did not
vote, then it would be counted as having voted abstain by default. Members of the SPO
community found this behavior counterintuitive and requested that non-voters be assigned a
no vote by default, with the caveat that an SPO could change its default setting by delegating
its reward account credential to an AlwaysNoConfidence DRep or an AlwaysAbstain DRep.
(This change applies only after the bootstrap period; during the bootstrap period the logic is
unchanged; see Sec. C.) To be precise, the agreed upon specification is the following: an SPO
that did not vote is assumed to have vote no, except under the following circumstances:

• if the SPO has delegated its reward credential to an AlwaysNoConfidence DRep, then
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their default vote is yes for NoConfidence proposals and no for other proposals;
• if the SPO has delegated its reward credential to an AlwaysAbstain DRep, then its default

vote is abstain for all proposals.

It is important to note that the credential that can now be used to set a default voting behavior
is the credential used to withdraw staking rewards, which is not (in general) the same as the
credential used for voting.

Fig. 44 defines the accepted and expired functions (together with some helpers) that are
used in the rules of RATIFY.

• getStakeDist computes the stake distribution based on the given governance role and the
corresponding delegations. Note that every constitutional committe member has a stake
of 1, giving them equal voting power. However, just as with other delegation, multiple CC
members can delegate to the same hot key, giving that hot key the power of those multiple
votes with a single actual vote.

• acceptedStakeRatio is the ratio of accepted stake. It is computed as the ratio of yes votes
over the votes that didn’t abstain. The latter is equivalent to the sum of yes and no votes.
The special division symbol /₀ indicates that in case of a division by 0, the numbers 0
should be returned. This implies that in the absence of stake, an action can only pass if
the threshold is also set to 0.

• acceptedBy looks up the threshold in the threshold table and compares it to the result of
acceptedStakeRatio.

• accepted then checks if an action is accepted by all roles; and
• expired checks whether a governance action is expired in a given epoch.

Fig. 45 defines functions that deal with delays and the acceptance criterion for ratification.
A given action can either be delayed if the action contained in EnactState isn’t the one the
given action is building on top of, which is checked by verifyPrev, or if a previous action was
a delayingAction. Note that delayingAction affects the future: whenever a delayingAction is
accepted all future actions are delayed. delayed then expresses the condition whether an action
is delayed. This happens either because the previous action doesn’t match the current one, or
because the previous action was a delaying one. This information is passed in as an argument.

The RATIFIES transition system is defined as the reflexive-transitive closure of RATIFY,
which is defined via three rules, defined in Fig. 46.

• RATIFY-Accept checks if the votes for a given GovAction meet the threshold required for
acceptance, that the action is accepted and not delayed, and RATIFY-Accept ratifies the
action.

• RATIFY-Reject asserts that the given GovAction is not accepted and expired; it removes
the governance action.

• RATIFY-Continue covers the remaining cases and keeps the GovAction around for further
voting.

Note that all governance actions eventually either get accepted and enacted via RATIFY-Accept
or rejected via RATIFY-Reject. If an action satisfies all criteria to be accepted but cannot be
enacted anyway, it is kept around and tried again at the next epoch boundary.

We never remove actions that do not attract sufficient yes votes before they expire, even if it
is clear to an outside observer that this action will never be enacted. Such an action will simply
keep getting checked every epoch until it expires.
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actualVotes : RatifyEnv → PParams → CCData → GovActionType
→ (GovRole × Credential ⇀ Vote) → (VDeleg ⇀ Vote)

actualVotes Γ pparams cc gaTy votes
= mapKeys (credVoter CC) actualCCVotes ∪ˡ actualPDRepVotes gaTy
∪ˡ actualDRepVotes ∪ˡ actualSPOVotes gaTy
where
roleVotes : GovRole → VDeleg ⇀ Vote
roleVotes r = mapKeys (uncurry credVoter) (filter (λ (x , _) → r ≡ proj₁ x) votes)

activeDReps = dom (filter (λ (_ , e) → currentEpoch ≤ e) dreps)
spos = filterˢ IsSPO (dom (stakeDistr stakeDistrs))

getCCHotCred : Credential × Epoch → Maybe Credential
getCCHotCred (c , e) = case ¿ currentEpoch ≤ e ¿ᵇ , lookupᵐ? ccHotKeys c of

(true , just (just c')) → just c'
_ → nothing -- expired, no hot key or resigned

SPODefaultVote : GovActionType → VDeleg → Vote
SPODefaultVote gaT (credVoter SPO (KeyHashObj kh)) = case lookupᵐ? pools kh of

nothing → Vote.no
(just p) → case lookupᵐ? delegatees (PoolParams.rewardAddr p) , gaTy of

(_ , TriggerHF) → Vote.no
(just noConfidenceRep , NoConfidence) → Vote.yes
(just abstainRep , _ ) → Vote.abstain
_ → Vote.no

SPODefaultVote _ _ = Vote.no

actualCCVote : Credential → Epoch → Vote
actualCCVote c e = case getCCHotCred (c , e) of

(just c') → maybe id Vote.no (lookupᵐ? votes (CC , c'))
_ → Vote.abstain

actualCCVotes : Credential ⇀ Vote
actualCCVotes = case cc of

nothing → ∅
(just (m , q)) → if ccMinSize ≤ lengthˢ (mapFromPartialFun getCCHotCred (m ˢ))

then mapWithKey actualCCVote m
else constMap (dom m) Vote.no

actualPDRepVotes : GovActionType → VDeleg ⇀ Vote
actualPDRepVotes NoConfidence

= ❴ abstainRep , Vote.abstain ❵ ∪ˡ ❴ noConfidenceRep , Vote.yes ❵
actualPDRepVotes _ = ❴ abstainRep , Vote.abstain ❵ ∪ˡ ❴ noConfidenceRep , Vote.no ❵

actualDRepVotes : VDeleg ⇀ Vote
actualDRepVotes = roleVotes DRep

∪ˡ constMap (mapˢ (credVoter DRep) activeDReps) Vote.no

actualSPOVotes : GovActionType → VDeleg ⇀ Vote
actualSPOVotes gaTy = roleVotes SPO ∪ˡ mapFromFun (SPODefaultVote gaTy) spos

Figure 43: Vote counting
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getStakeDist : GovRole → ℙ VDeleg → StakeDistrs → VDeleg ⇀ Coin
getStakeDist CC cc sd = constMap (filterˢ IsCC cc) 1
getStakeDist DRep _ sd = filterKeys IsDRep (sd .stakeDistr)
getStakeDist SPO _ sd = filterKeys IsSPO (sd .stakeDistr)

acceptedStakeRatio : GovRole → ℙ VDeleg → StakeDistrs → (VDeleg ⇀ Vote) → ℚ
acceptedStakeRatio r cc dists votes = acceptedStake /₀ totalStake
where
dist : VDeleg ⇀ Coin
dist = getStakeDist r cc dists
acceptedStake totalStake : Coin
acceptedStake = ∑[ x ← dist ∣ votes ⁻¹ Vote.yes ] x
totalStake = ∑[ x ← dist ∣ dom (votes ∣^ (❴ Vote.yes ❵ ∪ ❴ Vote.no ❵)) ] x

acceptedBy : RatifyEnv → EnactState → GovActionState → GovRole → Type
acceptedBy Γ (record { cc = cc , _; pparams = pparams , _ }) gs role =
let open GovActionState gs; open PParams pparams

votes' = actualVotes Γ pparams cc (gaType action) votes
mbyT = threshold pparams (proj₂ <$> cc) action role
t = maybe id 0ℚ mbyT

in acceptedStakeRatio role (dom votes') (stakeDistrs Γ) votes' ≥ t
∧ (role ≡ CC → maybe (λ (m , _) → lengthˢ m) 0 cc ≥ ccMinSize ⊎ Is-nothing mbyT)

accepted : RatifyEnv → EnactState → GovActionState → Type
accepted Γ es gs = acceptedBy Γ es gs CC ∧ acceptedBy Γ es gs DRep ∧ acceptedBy Γ es gs SPO

expired : Epoch → GovActionState → Type
expired current record { expiresIn = expiresIn } = expiresIn < current

Figure 44: Functions used in RATIFY rules, without delay
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verifyPrev : (a : GovActionType) → NeedsHash a → EnactState → Type
verifyPrev NoConfidence h es = h ≡ es .cc .proj₂
verifyPrev UpdateCommittee h es = h ≡ es .cc .proj₂
verifyPrev NewConstitution h es = h ≡ es .constitution .proj₂
verifyPrev TriggerHF h es = h ≡ es .pv .proj₂
verifyPrev ChangePParams h es = h ≡ es .pparams .proj₂
verifyPrev TreasuryWdrl _ _ = ⊤
verifyPrev Info _ _ = ⊤

delayingAction : GovActionType → Bool
delayingAction NoConfidence = true
delayingAction UpdateCommittee = true
delayingAction NewConstitution = true
delayingAction TriggerHF = true
delayingAction ChangePParams = false
delayingAction TreasuryWdrl = false
delayingAction Info = false

delayed : (a : GovActionType) → NeedsHash a → EnactState → Bool → Type
delayed gaTy h es d = ¬ verifyPrev gaTy h es ⊎ d ≡ true

acceptConds : RatifyEnv → RatifyState → GovActionID × GovActionState → Type
acceptConds Γ stʳ (id , st) =

accepted Γ es st
× ¬ delayed (gaType action) prevAction es delay
× ∃[ es' ] ⟦ id , treasury , currentEpoch ⟧ ⊢ es ⇀⦇ action ,ENACT⦈ es'

Figure 45: Functions related to ratification
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data _⊢_⇀⦇_,RATIFY⦈_ :
RatifyEnv → RatifyState → GovActionID × GovActionState → RatifyState → Type where

RATIFY-Accept :
let treasury = Γ .treasury

e = Γ .currentEpoch
(gaId , gaSt) = a
action = gaSt .action

in
∙ acceptConds Γ ⟦ es , removed , d ⟧ a
∙ ⟦ gaId , treasury , e ⟧ ⊢ es ⇀⦇ action ,ENACT⦈ es'
────────────────────────────────
Γ ⊢ ⟦ es , removed , d ⟧ ⇀⦇ a ,RATIFY⦈

⟦ es' , ❴ a ❵ ∪ removed , delayingAction (gaType action) ⟧

RATIFY-Reject :
let e = Γ .currentEpoch

(gaId , gaSt) = a
in
∙ ¬ acceptConds Γ ⟦ es , removed , d ⟧ a
∙ expired e gaSt
────────────────────────────────
Γ ⊢ ⟦ es , removed , d ⟧ ⇀⦇ a ,RATIFY⦈ ⟦ es , ❴ a ❵ ∪ removed , d ⟧

RATIFY-Continue :
let e = Γ .currentEpoch

(gaId , gaSt) = a
in
∙ ¬ acceptConds Γ ⟦ es , removed , d ⟧ a
∙ ¬ expired e gaSt
────────────────────────────────
Γ ⊢ ⟦ es , removed , d ⟧ ⇀⦇ a ,RATIFY⦈ ⟦ es , removed , d ⟧

_⊢_⇀⦇_,RATIFIES⦈_ : RatifyEnv → RatifyState → List (GovActionID × GovActionState)
→ RatifyState → Type

_⊢_⇀⦇_,RATIFIES⦈_ = ReflexiveTransitiveClosure {sts = _⊢_⇀⦇_,RATIFY⦈_}

Figure 46: The RATIFY transition system
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13 Epoch Boundary
This section is part of the Ledger.Epoch module of the formal ledger specification

record EpochState : Type where
field
acnt : Acnt
ss : Snapshots
ls : LState
es : EnactState
fut : RatifyState

Figure 47: Definitions for the EPOCH and NEWEPOCH transition systems

stakeDistr : UTxO → DState → PState → Snapshot
stakeDistr utxo stᵈ pState = ⟦ aggregate₊ (stakeRelation ᶠˢ) , stakeDelegs ⟧
where
open DState stᵈ using (stakeDelegs; rewards)
m = mapˢ (λ a → (a , cbalance (utxo ∣^' λ i → getStakeCred i ≡ just a))) (dom rewards)
stakeRelation = m ∪ proj₁ rewards

gaDepositStake : GovState → Deposits → Credential ⇀ Coin
gaDepositStake govSt ds = aggregateBy
(mapˢ (λ (gaid , addr) → (gaid , addr) , stake addr) govSt')
(mapFromPartialFun (λ (gaid , _) → lookupᵐ? ds (GovActionDeposit gaid)) govSt')
where govSt' = mapˢ (map₂ returnAddr) (fromList govSt)

mkStakeDistrs : Snapshot → GovState → Deposits → (Credential ⇀ VDeleg) → StakeDistrs
mkStakeDistrs ss govSt ds delegations .StakeDistrs.stakeDistr =
aggregateBy (proj₁ delegations) (Snapshot.stake ss ∪⁺ gaDepositStake govSt ds)

Figure 48: Functions for computing stake distributions

Fig. 49 defines the EPOCH transition rule. Currently, this incorporates logic that was
previously handled by POOLREAP in the Shelley specification [1, Sec 11.6]; POOLREAP is
not implemented here.

The EPOCH rule now also needs to invoke RATIFIES and properly deal with its results by
carrying out each of the following tasks.

• Pay out all the enacted treasury withdrawals.
• Remove expired and enacted governance actions & refund deposits.
• If govSt' is empty, increment the activity counter for DReps.
• Remove all hot keys from the constitutional committee delegation map that do not belong

to currently elected members.
• Apply the resulting enact state from the previous epoch boundary fut and store the

resulting enact state fut'.
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EPOCH : let

es = record esW { withdrawals = ∅ }
tmpGovSt = filter (λ x → ¿ proj₁ x ∉ mapˢ proj₁ removed ¿) govSt
orphans = fromList $ getOrphans es tmpGovSt
removed' = removed ∪ orphans
removedGovActions = flip concatMapˢ removed' λ (gaid , gaSt) →
mapˢ (returnAddr gaSt ,_) ((utxoSt .deposits ∣ ❴ GovActionDeposit gaid ❵) ˢ)

govActionReturns = aggregate₊ (mapˢ (λ (a , _ , d) → a , d) removedGovActions ᶠˢ)

trWithdrawals = esW .withdrawals
totWithdrawals = ∑[ x ← trWithdrawals ] x

retired = (pState .retiring) ⁻¹ e
payout = govActionReturns ∪⁺ trWithdrawals
refunds = pullbackMap payout toRwdAddr (dom (dState .rewards))
unclaimed = getCoin payout - getCoin refunds

govSt' = filter (λ x → ¿ proj₁ x ∉ mapˢ proj₁ removed' ¿) govSt

dState' = ⟦ dState .voteDelegs , dState .stakeDelegs , dState .rewards ∪⁺ refunds ⟧

pState' = ⟦ pState .pools ∣ retired ᶜ , pState .retiring ∣ retired ᶜ ⟧

gState' = ⟦ (if null govSt' then mapValues (1 +_) (gState .dreps) else (gState .dreps))
, gState .ccHotKeys ∣ ccCreds (es .cc) ⟧

certState' : CertState
certState' = ⟦ dState' , pState' , gState' ⟧

utxoSt' = ⟦ utxoSt .utxo , utxoSt .fees , utxoSt .deposits ∣ mapˢ (proj₁ ∘ proj₂) removedGovActions ᶜ , 0 ⟧

acnt' = record acnt
{ treasury = acnt .treasury ∸ totWithdrawals + utxoSt .donations + unclaimed }

in
record { currentEpoch = e

; stakeDistrs = mkStakeDistrs (Snapshots.mark ss') govSt'
(utxoSt' .deposits) (voteDelegs dState)

; treasury = acnt .treasury ; GState gState
; pools = pState .pools ; delegatees = dState .voteDelegs }

⊢ ⟦ es , ∅ , false ⟧ ⇀⦇ govSt' ,RATIFIES⦈ fut'
→ ls ⊢ ss ⇀⦇ tt ,SNAP⦈ ss'

────────────────────────────────
_ ⊢ ⟦ acnt , ss , ls , es₀ , fut ⟧ ⇀⦇ e ,EPOCH⦈

⟦ acnt' , ss' , ⟦ utxoSt' , govSt' , certState' ⟧ , es , fut' ⟧

Figure 49: EPOCH transition system
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A Agda Essentials
Here we describe some of the essential concepts and syntax of the Agda programming language
and proof assistant. The goal is to provide some background for readers who are not already
familiar with Agda, to help them understand the other sections of the specification. For more
details, the reader is encouraged to consult the official Agda documentation [6].

A.1 Record Types
A record is a product with named accessors for the individual fields. It provides a way to define
a type that groups together inhabitants of other types.

Example.

record Pair (A B : Type) : Type where
constructor ⦅_,_⦆
field
fst : A
snd : B

We can construct an element of the type Pair ℕ ℕ (i.e., a pair of natural numbers) as follows:

p23 : Pair ℕ ℕ
p23 = record { fst = 2; snd = 3 }

Since our definition of the Pair type provides an (optional) constructor ⦅_,_⦆, we can have
defined p23 as follows:

p23' : Pair ℕ ℕ
p23' = ⦅ 2 , 3 ⦆

Finally, we can “update” a record by deriving from it a new record whose fields may contain
new values. The syntax is best explained by way of example.

p24 : Pair ℕ ℕ
p24 = record p23 { snd = 4 }

This results a new record, p24, which denotes the pair ⦅ 2 , 4 ⦆.

See also agda.readthedocs.io/record-types.

B Bootstrapping EnactState
To form an EnactState, some governance action IDs need to be provided. However, at the time
of the initial hard fork into Conway there are no such previous actions. There are effectively
two ways to solve this issue:

• populate those fields with IDs chosen in some manner (e.g. random, all zeros, etc.), or
• add a special value to the types to indicate this situation.

In the Haskell implementation the latter solution was chosen. This means that everything
that deals with GovActionID needs to be aware of this special case and handle it properly.

This specification could have mirrored this choice, but it is not necessary here: since it is
already necessary to assume the absence of hash-collisions (specifically first pre-image resistance)
for various properties, we could pick arbitrary initial values to mirror this situation. Then, since
GovActionID contains a hash, that arbitrary initial value behaves just like a special case.
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C Bootstrapping the Governance System
As described in CIP-1694, the governance system needs to be bootstrapped. During the boot-
strap period, the following changes will be made to the ledger described in this document.

• Transactions containing any proposal except TriggerHF, ChangePParams or Info will be
rejected.

• Transactions containing a vote other than a CC vote, a SPO vote on a TriggerHF action or
any vote on an Info action will be rejected.

• Q4, P5 and Q5e are set to 0.
• An SPO that does not vote is assumed to have voted abstain.

This allows for a governance mechanism similar to the old, Shelley-era governance during the
bootstrap phase, where the constitutional committee is mostly in charge [8]. These restrictions
will be removed during a subsequent hard fork, once enough DRep stake is present in the system
to properly govern and secure itself.
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